LOJ2687 BOI2013 Vim 线头DP
多图警告!!!
一种很新奇的\(DP\),全网似乎只有一两篇题解……
首先,序列中的一段\(e\)等价于在跳的过程中这一段\(e\)之后的一个字符必须要经过,并且在最后的答案中加上$2 \times $e的个数。
那么原题等价于:给出一个序列和两种移动方式,移动过程中必须要经过某一些点,求最小代价。
我们不妨把若干连续的\(f\)操作和若干连续的\(h\)操作看成线,那么移动路线就变成下面这样

首先,考虑下面两种移动路线

A路线一定没有B路线优,因为A路线有重复的折返。
这样说来:如果经过某些连续的\(f\)操作之后开始进行\(h\)操作,那么一定会到达要到达的最前面的目标,然后一直进行\(f\)操作不再回来。
到这里不难设计出一个暴力的\(DP\):设\(dp_{i,j}\)表示已经经过了前\(i\)个必经字符,当前光标在第\(j\)个字符时的最小代价。设字符集为\(A\),那么这种\(DP\)是\(O(N^2A)\)的,不够优秀。考虑优化。
发现上面的条件等价于对于某一个位置\(i\),经过的位置覆盖了位置\(i\)与\(i+1\)之间的线段的线的数量要么是\(1\),要么是\(3\),对应下图的\(AB\)两种情况。

到了这里就可以开始设计更加优秀的\(DP\)了
设\(p_{i,j}\)表示覆盖了\(i\)与\(i+1\)之间的线段\(1\)次,且覆盖\(i\)与\(i+1\)之间的线段的\(f\)操作选择的字符是\(j\)的最小代价,\(q_{i,j,k}\)表示覆盖了\(i\)与\(i+1\)之间的线段\(3\)次,且在进行\(h\)操作之前覆盖\(i\)与\(i+1\)之间的线段的\(f\)操作选择的字符是\(j\)、在进行\(h\)操作之后覆盖\(i\)与\(i+1\)之间的线段的\(f\)操作选择的字符是\(k\)的最小代价
又设\(s_i\)表示字符串的第\(i\)个字符,\(imp_i\)表示原串中第\(i\)个字符前是否存在字符\(e\)
转移:
\]
\(p_{i,j}\)的转移分别对应下图的\(ABCD\)情况
其中虚线表示新加入的线,红色字表示对应位置的字符类型,黑色字表示位置编号

\(\begin{align} q_{i,j,k} = & p_{i-1,j} + 3 & j \neq s_i \\ & p_{i-1,s_i}+5 \\ & q_{i-1,j,k} + 1 & j \neq s_i \&\& k \neq s_i \\ & q_{i-1,s_i,k} + 3 & k \neq s_i \\ & q_{i-1,j,s_i} + 3 & j \neq s_i \\ & q_{i-1,s_i,s_i} + 5 \end{align}\)
\(q_{i,j,k}\)转移分别对应下图中的\(ABCDEF\)情况






可以发现转移就是把线延长和补全的过程,所以叫做线头DP
初始值:\(f_{0,s_1}=0\),其他等于\(inf\)。最后的答案是\(f_{len,x}\),其中\(x\)是没有在字符串中出现过的字符。这可以理解成在无限远的地方有一个字符\(x\),最后一次操作就是直接跳到这一个无限远的地方。当然,这意味着最后的答案会加上跳到这个无限远的地方的\(2\)的代价,减掉\(2\)就行了。
Update:转移\(q\)的时候并不知道为什么D有用,但是不转移会WA
#include<bits/stdc++.h>
#define INF 0x3f3f3f3f
//This code is written by Itst
using namespace std;
inline int read(){
int a = 0;
char c = getchar();
bool f = 0;
while(!isdigit(c) && c != EOF){
if(c == '-')
f = 1;
c = getchar();
}
if(c == EOF)
exit(0);
while(isdigit(c)){
a = a * 10 + c - 48;
c = getchar();
}
return f ? -a : a;
}
const int MAXN = 7e4 + 7 , A = 11;
int f[MAXN][A] , g[MAXN][A][A] , ch[MAXN];
bool must[MAXN];
int N , M , cnt;
inline char getc(){
char c = getchar();
while(!islower(c))
c = getchar();
return c;
}
int main(){
#ifndef ONLINE_JUDGE
//freopen("in","r",stdin);
//freopen("out","w",stdout);
#endif
N = read();
bool ife = 1;
for(int i = 1 ; i <= N ; ++i){
char c = getc();
if(c == 'e')
cnt += (ife = 1);
else{
must[++M] = ife;
ife = 0;
ch[M] = c - 'a';
}
}
for(int i = 0 ; i < A ; ++i){
for(int j = 0 ; j < A ; ++j)
g[0][i][j] = INF;
f[0][i] = INF;
}
f[0][ch[1]] = 0;
for(int i = 1 ; i <= M ; ++i)
for(int j = 0 ; j < A ; ++j){
int t = INF;
if(j != ch[i] && !must[i])
t = min(t , f[i - 1][j]);
t = min(t , f[i - 1][ch[i]] + 2);
if(j != ch[i])
t = min(t , g[i - 1][ch[i]][j]);
t = min(t , g[i - 1][ch[i]][ch[i]] + 2);
f[i][j] = t;
for(int k = 0 ; k < A ; ++k){
t = INF;
if(j != ch[i])
t = min(t , f[i - 1][j] + 3);
t = min(t , f[i - 1][ch[i]] + 5);
if(j != ch[i] && k != ch[i])
t = min(t , g[i - 1][j][k] + 1);
if(j != ch[i])
t = min(t , g[i - 1][j][ch[i]] + 3);
if(k != ch[i])
t = min(t , g[i - 1][ch[i]][k] + 3);
t = min(t , g[i - 1][ch[i]][ch[i]] + 5);
g[i][j][k] = t;
}
}
cout << f[M][10] + 2 * cnt - 2;
return 0;
}
LOJ2687 BOI2013 Vim 线头DP的更多相关文章
- 【LOJ#2687】Vim(动态规划)
[LOJ#2687]Vim(动态规划) 题面 LOJ 题解 发现移动的路径一定是每次往后跳到下一个某个字符的位置,然后往回走若干步,删掉路径上的所有\(e\),然后继续执行这个操作. 这里稍微介绍一下 ...
- [JZOJ3320] 【BOI2013】文本编辑器
题目 题目大意 给你一个文本,要删去其中所有的'e'. 有三种操作: h光标左移. x删除光标上面的字母(光标是横着的). fc跳到后面的第一个字符为'c'的位置. 问操作序列的最短长度. 思考历程 ...
- centos7.3安装MongoDB
安装步骤: 1.配置包管理系统 vim /etc/yum.repos.d/mongodb.repo [mongodb] name=MongoDB Repository baseurl=http://d ...
- 会务准备期间材料准备工作具体实施总结 ----(vim技巧应用, python信息提取与整合, microsoft word格式调整批量化)
会务准备期间材料准备工作具体实施总结(vim, python, microsoft word) span.kw { color: #007020; font-weight: bold; } code ...
- vimcommandfilepatchcmdfold VIM技巧之分隔窗口 一级精华
VIM技巧之分隔窗口 分类: 技术2010-07-08 09:57 754人阅读 评论(1) 收藏 举报 同时显示两个不同的文件, 或者同时查看同一个文件的两个不同位置, 或者是同步显示两个文件的 ...
- vim vi 及其相关插件的使用
GIMP->linux下16位图查看工具 实用手册:130+ 提高开发效率的 vim 常用命令 http://www.cnblogs.com/lhb25/p/130-essential-vim- ...
- VIM 分割窗口
VIM 分割窗口 *08.1* 分割窗口 打开新窗口最简单的命令如下: :split 这个命令把屏幕分解成两个窗口并把光标置于上面的窗口中: +----------------------- ...
- 最佳vim技巧
最佳vim技巧----------------------------------------# 信息来源----------------------------------------www.vim ...
- vim多标签,多窗口
多标签 进入vim前 vim -p <文件名> 以多标签形式打开文件.如vim -p * 就是编辑当前目录的所有文件, vim编辑中 :tabnew 增加一个标签 :tabc 关闭当前的t ...
随机推荐
- Jmeter进阶篇之监控服务器cpu,内存
对于Jmeter,可以不再赘述,因为介绍得也够多了. 那么相信有部分同学已经尝试着自主去学习如果使用Jmeter对服务器进行压力测试了. 但是可能也会发现,Jmeter好像监控不了服务器的cpu已经内 ...
- Android View 绘制流程
Android 中 Activity 是作为应用程序的载体存在,代表着一个完整的用户界面,提供了一个窗口来绘制各种视图,当 Activity 启动时,我们会通过 setContentView 方法来设 ...
- 修复cocos2dx的Label,WP8下不能换行的问题
注:2014年12月23日有内存/性能优化更新,内容在下面分割线后 搞了几个小时,这个头疼的问题,我给出代码吧. 找到 libcocos2d/platform/winrt/CCFreeTypeFont ...
- Pyhon环境变量的一些坑
在正常的情况下,使用编译器执行Python文件,无需考虑环境变量的改变 例:sum --one --one1.py --two --two1.py 在执行one.py文件需要调用 two.py中某个方 ...
- 安装office2010提示要安装MSXML6.10.1129.0解决方法
系统win7 32位 安装office2010出现了错误,提示要安装MSXML6.10.1129.0解决方法 1.下载MSXML6.10.1129.0进行安装 2.若本机已安装过不管用: a.在运行里 ...
- Jenkins 自动发布 Spring Boot 项目(Gitee)
1.下载 wget http://mirrors.jenkins.io/war-stable/latest/jenkins.war,并部署到tomcat下 2.机器安装好 java ,maven ,g ...
- Docker容器学习与分享12
Docker多主机管理 之前在一台Centos7上安装了Docker,如果是在多台主机上都安装Docker,用手动安装的方法不光效率低下,而且有可能出错,所以可以使用Docker Machine进行多 ...
- Linux 小知识翻译 - 「桌面环境」
这次聊聊桌面环境. 上次聊了 X Window System 相关的内容,虽然令人意外,但X Window System 和桌面环境不是一回事.请大家稍微考虑一下. X Window System 是 ...
- python第五十一课——__slots
2.__slots__: 作用:限制对象随意的动态添加属性 举例: class Demo: __slots__ = ('name','age','height','weight') #实例化Demo对 ...
- UVA548-Tree(二叉树数组表示)
Problem UVA548-Tree Accept: 2287 Submit: 13947 Time Limit: 3000 mSec Problem Description You are to ...