Meeting

Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 3361    Accepted Submission(s): 1073

Problem Description
Bessie and her friend Elsie decide to have a meeting. However, after Farmer John decorated his
fences they were separated into different blocks. John's farm are divided into n blocks labelled from 1 to n.
Bessie lives in the first block while Elsie lives in the n-th one. They have a map of the farm
which shows that it takes they ti minutes to travel from a block in Ei to another block
in Ei where Ei (1≤i≤m) is a set of blocks. They want to know how soon they can meet each other
and which block should be chosen to have the meeting.
 
Input
The first line contains an integer T (1≤T≤6), the number of test cases. Then T test cases
follow.

The first line of input contains n and m. 2≤n≤105. The following m lines describe the sets Ei (1≤i≤m). Each line will contain two integers ti(1≤ti≤109)and Si (Si>0) firstly. Then Si integer follows which are the labels of blocks in Ei. It is guaranteed that ∑mi=1Si≤106.

 
Output
For each test case, if they cannot have the meeting, then output "Evil John" (without quotes) in one line.

Otherwise, output two lines. The first line contains an integer, the time it takes for they to meet.
The second line contains the numbers of blocks where they meet. If there are multiple
optional blocks, output all of them in ascending order.

 
Sample Input
2
5 4
1 3 1 2 3
2 2 3 4
10 2 1 5
3 3 3 4 5
3 1
1 2 1 2
 
Sample Output
Case #1: 3
3 4
Case #2: Evil John

Hint

In the first case, it will take Bessie 1 minute travelling to the 3rd block, and it will take Elsie 3 minutes travelling to the 3rd block. It will take Bessie 3 minutes travelling to the 4th block, and it will take Elsie 3 minutes travelling to the 4th block. In the second case, it is impossible for them to meet.

 
Source
 
题意:有m个集合,每个集合里面的任意两点均有一条距离为ei的无向边,求1和n到其他点的最短距离中最大值的最小值。
思路:最短路模板题。每个集合作为作为一个点,对应的点到集合的距离为ei,最后答案/2。
代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<bitset>
#include<queue>
#include<stack>
#include<map>
#include<vector>
using namespace std;
#define eps 0.0000001
typedef long long ll;
typedef pair<int,int> P;
const int maxn=2e5+,maxm=1e5+,inf=0x3f3f3f3f,mod=1e9+;
const ll INF=1e18+;
struct edge
{
int from,to;
ll w;
};
vector<edge>G[maxn];
priority_queue<P,vector<P>,greater<P> >q;
ll dist[][maxn];
void addedge(int u,int v,ll w)
{
G[u].push_back((edge)
{
u,v,w
});
G[v].push_back((edge)
{
v,u,w
});
}
void dij(int t,int s)
{
dist[t][s]=0LL;
q.push(P(dist[t][s],s));
while(!q.empty())
{
P p=q.top();
q.pop();
int u=p.second;
for(int i=; i<G[u].size(); i++)
{
edge e=G[u][i];
if(dist[t][e.to]>dist[t][u]+e.w)
{
dist[t][e.to]=dist[t][u]+e.w;
q.push(P(dist[t][e.to],e.to));
}
}
}
}
void init(int n)
{
for(int i=; i<=*n+; i++) G[i].clear();
}
int main()
{
int T;
scanf("%d",&T);
for(int Case=; Case<=T; Case++)
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=; i<=m; i++)
{
int val;
scanf("%lld",&val);
int t;
scanf("%d",&t);
while(t--)
{
int s;
scanf("%d",&s);
addedge(s,n+i,val);
}
}
for(int i=; i<=*n+; i++) dist[][i]=dist[][i]=INF;
dij(,);
dij(,n);
ll ans=INF;
for(int i=; i<=n; i++)
{
//printf("%lld %lld\n",dist[0][i],dist[1][i]);
ans=min(ans,max(dist[][i],dist[][i]));
}
printf("Case #%d: ",Case);
if(ans>=INF) puts("Evil John");
else
{
printf("%lld\n",ans/);
int cou=;
for(int i=; i<=n; i++)
{
if(!cou&&max(dist[][i],dist[][i])==ans) printf("%d",i),cou++;
else if(cou&&max(dist[][i],dist[][i])==ans) printf(" %d",i),cou++;
}
printf("\n");
}
init(n);
}
return ;
}

最短路模板题

HDU 5521.Meeting 最短路模板题的更多相关文章

  1. poj1511/zoj2008 Invitation Cards(最短路模板题)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Invitation Cards Time Limit: 5 Seconds    ...

  2. [poj2449]Remmarguts' Date(K短路模板题,A*算法)

    解题关键:k短路模板题,A*算法解决. #include<cstdio> #include<cstring> #include<algorithm> #includ ...

  3. 牛客小白月赛6 I 公交线路 最短路 模板题

    链接:https://www.nowcoder.com/acm/contest/136/I来源:牛客网 题目描述 P市有n个公交站,之间连接着m条道路.P市计划新开设一条公交线路,该线路从城市的东站( ...

  4. HDU 5521 Meeting(虚拟节点+最短路)

    Meeting Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others) Total ...

  5. HDU 2544 最短路(模板题)

    求1到N的最短路径,模板题,以1为源点,用dijkstra算法(可以用优先级队列优化) #include <iostream> #include <algorithm> #in ...

  6. HDU 2222(AC自动机模板题)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2222 题目大意:多个模式串.问匹配串中含有多少个模式串.注意模式串有重复,所以要累计重复结果. 解题 ...

  7. HDU 1711 - Number Sequence - [KMP模板题]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1711 Time Limit: 10000/5000 MS (Java/Others) Memory L ...

  8. [USACO07FEB]银牛派对Silver Cow Party---最短路模板题

    银牛排队 对于我这种蒟蒻来说,还是不要跑一次单元最短路.跑两次好写呀(- ̄▽ ̄)- 而题目中是有向图.如果如果按照题意进行最短路的话.就会出现一个单终点最短路和一个单起点最短路 对于单起点自然就是套模 ...

  9. POJ 2387 Til the Cows Come Home --最短路模板题

    Dijkstra模板题,也可以用Floyd算法. 关于Dijkstra算法有两种写法,只有一点细节不同,思想是一样的. 写法1: #include <iostream> #include ...

随机推荐

  1. PCB行业研究

    PCB行业研究 PCB产业上下游 关于HDI电路板 主要用于手机行业,对电路板面积有严格要求. 啥时候铜材料上涨

  2. Oracle DBA最常用的269条命令

    1 运行SQLPLUS工具 sqlplus 2 以OS的默认身份连接 / as sysdba 3 显示当前用户名 show user 4 直接进入SQLPLUS命令提示符 sqlplus /nolog ...

  3. 虚拟机网络连接NAT模式,本地用Xshell连接

    当虚拟机centos6网络连接使用NAT模式时,因为共用宿主机ip所以当使用Xshell时直接填写虚拟机的ip地址和22端口是无法连接虚拟机的. 这样就需要配置端口映射关系! 1. 打开虚拟网络编辑器 ...

  4. C++Primer第五版——习题答案详解(二)

    习题答案目录:https://www.cnblogs.com/Mered1th/p/10485695.html 第3章 字符串.向量和数组 练习3.2 一次读入一整行 #include<iost ...

  5. Ubutu16.04+Cuda9.2/9.0+Cudnn7.12/7.05+TensorFlow-gpu-1.8/1.6

    目录 Ubuntu16.04 Installl 1. 安装环节 2. 安装卡死 3. NVIDIA显卡安装 2. CUDA Install 3.Cudnn7.05 Install 4.Tensorfl ...

  6. C# 数字转换成大写

    /// <summary> /// 数字转大写 /// </summary> /// <param name="Num">数字</para ...

  7. itextsharp图片生成pdf模糊问题解释

    I forget to mention that I' am using itextsharp 5.0.2. It turned out that PDF DPI = 110, which means ...

  8. Centos nginx安装

    1.下载nginx http://nginx.org/en/download.html 2.上传到服务器上,并解压: rz 后选择上传的文件 tar -zxvf /fish/download/ngin ...

  9. linux文件属性的10个字符各代表什么意思

    10个字符表示文件类别和权限,具体如下: 例: 第一个字符表示文件类别,代表的含义如下:-:普通文件d:目录文件b:块设备文件c:字符设备文件l:符号链接文件 后面9个字符代表3组访问权限:第1组的3 ...

  10. saltstack的封装和内网使用

    0.客户端使用 linux:把linux的ragent文件夹拷贝到内网linux /opt目录下,运行初始化脚本 salt服务端:# @Master:"/opt/ragent/python/ ...