The Designer (笛卡尔定理+韦达定理 || 圆的反演)
Nowadays, little haha got a problem from his teacher.His teacher wants to design a big logo for the campus with some circles tangent with each other. And now, here comes the problem. The teacher want to draw the logo on a big plane. You could see the example of the graph in the Figure1
At first, haha's teacher gives him two big
circles, which are tangent with each other. And, then, he wants to add
more small circles in the area where is outside of the small circle, but
on the other hand, inside the bigger one (you may understand this
easily if you look carefully at the Figure1.
Each small circles are added by the following principles.
* you should add the small circles in the order like Figure1.
* every time you add a small circle, you should make sure that it is tangented with the other circles (2 or 3 circles) like Figure1.
The teacher wants to know the total amount of pigment he would use when he creates his master piece.haha doesn't know how to answer the question, so he comes to you.
Task
add in the figure. You are supposed to write a program to calculate the
total area of all the small circles.
InputThe first line contains a integer t(1≤t≤1200), which means the number of the test cases. For each test case, the first line insist of two integers R1 and R2 separated by a space (1≤R≤100),
which are the radius of the two big circles. You could assume that the
two circles are internally tangented. The second line have a simple
integer N (1≤N≤10 000 000), which is the number of small circles the teacher want to add.
OutputFor each test case:
Contains a number in a single line, which shows the total area of
the small circles. You should out put your answer with exactly 5 digits
after the decimal point (NO SPJ).
Sample Input
2
5 4
1
4 5
1
Sample Output
3.14159
3.14159
笛卡尔定理

;

。 -------百度百科

中,两根x₁、x₂有如下关系:


#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath>
using namespace std;
typedef long long ll;
const double eps = 1e-;
const double PI = acos(-1.0); void Debug()
{
puts("");
cout<<"+++++++++++++++++++++++++++分界线++++++++++++++++++++++++++++++"<<endl;
for(int i=; i<; i++)
{
for(int j=; j<; j++)
{
cout<<<<" ";
}
cout<<endl;
}
cout<<"+++++++++++++++++++++++++++分界线++++++++++++++++++++++++++++++"<<endl;
puts("");
} int n;
double r1, r2, r3,r4;
double ans;
void sovel()
{
if(r1 < r2) swap(r1,r2);
r3 = r1-r2;
double k1 = -1.0/r1, k2 = 1.0/r2, k3 = 1.0/r3, k4 = k1+k2+k3;
ans = r3*r3;
for(int i = ; i <= n; i++)
{
r4 = 1.0/k4;
ans += r4*r4;
if(r4*r4 < eps) break;
if(i+ <= n) ans +=r4*r4, i++;
double k5 = *(k1+k2+k4) - k3;
k3 = k4;
k4 = k5;
}
printf("%.5f\n", ans*PI); } int main()
{
std::ios::sync_with_stdio(false);
std::cin.tie();
int T;
cin >> T;
while(T--)
{
cin >> r1 >>r2 >> n;
sovel(); }
return ;
}
圆的反演 :
The Designer (笛卡尔定理+韦达定理 || 圆的反演)的更多相关文章
- CF77E Martian Food(圆的反演or 笛卡尔定理+韦达定理)
题面 传送门 这题有两种方法(然而两种我都想不到) 方法一 前置芝士 笛卡尔定理 我们定义一个圆的曲率为\(k=\pm {1\over r}\),其中\(r\)是圆的半径 若在平面上有两两相切,且六个 ...
- HDU 6158 笛卡尔定理+韦达定理
The Designer Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tota ...
- 爆炸几何之 CCPC网络赛 I - The Designer (笛卡尔定理)
本文版权归BobHuang和博客园共有,不得转载.如想转载,请联系作者,并注明出处. Nowadays, little hahahaha got a problem from his teache ...
- HDU 6158 笛卡尔定理 几何
LINK 题意:一个大圆中内切两个圆,三个圆两两相切,再不断往上加新的相切圆,问加上的圆的面积和.具体切法看图 思路:笛卡尔定理: 若平面上四个半径为r1.r2.r3.r4的圆两两相切于不同点,则其半 ...
- 19牛客暑期多校 round1 A 有关笛卡尔树的结论
题目传送门//res tp nowcoder 分析 定理:B1~B2当且仅当B1与B2有同构的笛卡尔树. (B₁~B₂ iff B₁ and B₂ have isomorphic Cartesian ...
- codevs2178 表达式运算Cuties[笛卡尔树]
2178 表达式运算Cuties 时间限制: 1 s 空间限制: 32000 KB 题目等级 : 大师 Master 题解 查看运行结果 题目描述 Description 给出一个表达 ...
- POJ 2559 Largest Rectangle in a Histogram ——笛卡尔树
[题目分析] 本来是单调栈的题目,用笛卡尔树可以快速的水过去. 把每一个矩阵看成一个二元组(出现的顺序,高度). 然后建造笛卡尔树. 神奇的发现,每一个节点的高度*该子树的大小,就是这一块最大的子矩阵 ...
- NOIP2011pj表达式的值[树形DP 笛卡尔树 | 栈 表达式解析]
题目描述 对于1 位二进制变量定义两种运算: 运算的优先级是: 先计算括号内的,再计算括号外的. “× ”运算优先于“⊕”运算,即计算表达式时,先计算× 运算,再计算⊕运算.例如:计算表达式A⊕B × ...
- CROSS JOIN连接用于生成两张表的笛卡尔集
将两张表的情况全部列举出来 结果表: 列= 原表列数相加 行= 原表行数相乘 CROSS JOIN连接用于生成两张表的笛卡尔集. 在sql中cross join的使用: 1.返回的记录数为两个 ...
随机推荐
- git 中merge的用法
git merge –no-ff 可以保存你之前的分支历史.能够更好的查看 merge历史,以及branch 状态. git merge 则不会显示 feature,只保留单条分支记录.
- MySQL 全文检索 ngram Mybatis
创建全文索引(FullText index) 创建表的同时创建全文索引 FULLTEXT (name) WITH PARSER ngram 通过 alter table 的方式来添加 alter ta ...
- 转:The Difference Between a LayoutTransform and a RenderTransform
来自:http://www.tuicool.com/articles/fIfm22 #770 – The Difference Between a LayoutTransform and a Rend ...
- ubuntu14.04 terminator字体挤在一起问题
字体挤在一起:在ubuntu下请选择mono后缀的字体就可以了 右键—>首选项—>profile—>general—>字体设置成ubuntu mono 或Free mono
- vue filters 时间戳转化成时间格式
vue filters 时间戳转化成时间格式 filters: { formatDate: function (time) { var re = /-?\d+/ var m = re.exec(tim ...
- Nestjs 获取cookie
Docs yarn add cookie-parser main.ts import { NestFactory } from '@nestjs/core'; import { AppModule } ...
- 网站favicon图标的显示问题
今天在微信开发者工具发现一个错误,说是找不到favicon.ico这个文件. 这个就是标签式浏览器显示在页面title前面的小图标,移动端也没什么用,所以一直没在意,今天有空就研究了一下,发现还是有点 ...
- elk-logstash-kibana(三)
一.修改logstash.yml unzip logstash-6.3.2 vim config/logstash.yml #添加:检查所有ip http.host: "0.0.0.0&qu ...
- Java编程基础篇第四章
循环结构 循环结构的分类 for循环,while循环,do...while()循环 for循环 注意事项: a:判断条件语句无论简单还是复杂结果是boolean类型 b:循环体语句如果是一条语句,大括 ...
- Kerberos安全体系详解---Kerberos的简单实现
1. Kerberos简介 1.1. 功能 一个安全认证协议 用tickets验证 避免本地保存密码和在互联网上传输密码 包含一个可信任的第三方 使用对称加密 客户端与服务器(非KDC)之间能够相互 ...