X问题

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3921    Accepted Submission(s): 1253

Problem Description

求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X mod a[1] = b[1], X mod a[2] = b[2], …, X mod a[i] = b[i], … (0 < a[i] <= 10)。
 

Input

输入数据的第一行为一个正整数T,表示有T组测试数据。每组测试数据的第一行为两个正整数N,M (0 < N <= 1000,000,000 , 0 < M <= 10),表示X小于等于N,数组a和b中各有M个元素。接下来两行,每行各有M个正整数,分别为a和b中的元素。
 

Output

对应每一组输入,在独立一行中输出一个正整数,表示满足条件的X的个数。
 

Sample Input

3
10 3
1 2 3
0 1 2
100 7
3 4 5 6 7 8 9
1 2 3 4 5 6 7
10000 10
1 2 3 4 5 6 7 8 9 10
0 1 2 3 4 5 6 7 8 9
 

Sample Output

1
0
3
 
 

应用下,刚刚学的中国剩余定理(不互质版);题意就不讲了,中文的。

转载请注明出处:http://www.cnblogs.com/yuyixingkong/

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1573

#include<stdio.h>
#define LL __int64 LL A[],B[];
LL d,x,y,ans;
LL dg;//最大公约数
void exgcd(LL a,LL b,LL& d,LL& x,LL& y)
{
if(!b){d=a;x=;y=;}
else
{
exgcd(b,a%b,d,y,x);
y-=x*(a/b);
}
}
LL gcd(LL a,LL b)
{
if(!b) return a;
else
gcd(b,a%b);
}
LL China(LL n)
{
LL dm,a,b,d,x,y;
LL c1,c2,c;
a=A[];
c1=B[];
for(int i=;i<n;i++)
{
b=A[i];
c2=B[i];
exgcd(a,b,d,x,y);
dm=b/d;
c=c2-c1;
if(c%d) return -;
x=((x*c/d)%dm+dm)%dm; c1=a*x+c1;
a=a*b/d;
} dg=a;
if(c1==)
{
c1=;
for(int i=;i<n;i++)
{
c1=c1*A[i]/gcd(c1,A[i]);
}
dg=c1;
}
return c1;
}
int main()
{
LL T,N,M;
scanf("%I64d",&T);
while(T--)
{
scanf("%I64d%I64d",&N,&M);
for(LL i=;i<M;i++) scanf("%I64d",&A[i]);
for(LL i=;i<M;i++) scanf("%I64d",&B[i]); ans=China(M);
//printf("ans==%I64d\tdg=%I64d\n",ans,dg);
if(ans==-||ans>N) printf("0\n");
else
{
printf("%I64d\n",(N-ans)/dg+);
}
}
return ;
}

X问题(中国剩余定理+不互质版应用)hdu1573的更多相关文章

  1. POJ 1006 Biorhythms --中国剩余定理(互质的)

    Biorhythms Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 103539   Accepted: 32012 Des ...

  2. Hello Kiki(中国剩余定理——不互质的情况)

    Hello Kiki Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Su ...

  3. poj 2981 Strange Way to Express Integers (中国剩余定理不互质)

    http://poj.org/problem?id=2891 Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 13 ...

  4. hdu X问题 (中国剩余定理不互质)

    http://acm.hdu.edu.cn/showproblem.php?pid=1573 X问题 Time Limit: 1000/1000 MS (Java/Others)    Memory ...

  5. HDU 5768 Lucky7 容斥原理+中国剩余定理(互质)

    分析: 因为满足任意一组pi和ai,即可使一个“幸运数”被“污染”,我们可以想到通过容斥来处理这个问题.当我们选定了一系列pi和ai后,题意转化为求[x,y]中被7整除余0,且被这一系列pi除余ai的 ...

  6. Strange Way to Express Integers(中国剩余定理+不互质)

    Strange Way to Express Integers Time Limit:1000MS Memory Limit:131072KB 64bit IO Format:%I64d & ...

  7. 中国剩余定理模数互质的情况模板(poj1006

    http://poj.org/problem?id=1006 #include <iostream> #include <cstdio> #include <queue& ...

  8. LightOJ 1319 - Monkey Tradition CRT除数互质版

    本题亦是非常裸的CRT. CRT的余数方程 那么定义 则 其中 为模mi的逆元. /** @Date : 2016-10-23-15.11 * @Author : Lweleth (SoungEarl ...

  9. POJ 2891 Strange Way to Express Integers 中国剩余定理解法

    一种不断迭代,求新的求余方程的方法运用中国剩余定理. 总的来说,假设对方程操作.和这个定理的数学思想运用的不多的话.是非常困难的. 參照了这个博客的程序写的: http://scturtle.is-p ...

随机推荐

  1. MFC:Tab控件嵌入对话框

    1.先建立一个对话框MFC应用程序,然后在工具箱里面把Tab Control控件放到对话框中的合适位置上. 再在对话框类中,声明一个CTabCtrl变量: CTabCtrl m_tab; 变量m_ta ...

  2. java实现随机产生6位数的方法总结

    package com.yin.test; import java.util.Random; import org.junit.Test; /** * @author v_yinyl * @date ...

  3. Delphi - 子窗体继承父窗体后如何显示父窗体上的控件

    1.创建子窗体Form1 File -> New -> Form,新建一个form,在form的单元文件中修改 2.子窗体中引用父窗体单元 uses TFatherForm 3.将子窗体中 ...

  4. Vue 父组件ajax异步更新数据,子组件props获取不到

    转载 https://blog.csdn.net/d295968572/article/details/80810349 当父组件 axjos 获取数据,子组件使用 props 接收数据时,执行 mo ...

  5. 使用tinymce富文本

    1.tinymce入门参考 https://www.tiny.cloud/docs/general-configuration-guide/basic-setup/ 2.tinymce安装选项 htt ...

  6. Could not load file or assembly Microsoft.SqlServer.management.sdk.sfc version 11.0.0.0

    I have installed MS SQL Server 2012 R2 and when I try to update model from database under EDMX file ...

  7. Python函数学习——作用域与嵌套函数

    全局与局部变量 在函数中定义的变量称为局部变量,在程序的一开始定义的变量称为全局变量. 全局变量作用域是整个程序,局部变量作用域是定义该变量的函数. 当全局变量与局部变量同名时,在定义局部变量的函数内 ...

  8. shell编程中的循环语句

    while循环直接从文件中读取 while read line do command done < filename until循环 until 条件 do command done for循环 ...

  9. hashcode和equals方法的区别和联系

    说到 hashcode就要和Java中的集合,HashSet,HashMap 关系最为密切. 首先附录两张Java的集合结构图: 图二:(上图的简化版) 从Set集合的特点说起 & Set是如 ...

  10. 图形数据库Neo4j基本了解

    在深入学习图形数据库之前,首先理解属性图的基本概念.一个属性图是由顶点(Vertex),边(Edge),标签(Lable),关系类型和属性(Property)组成的有向图.顶点也称作节点(Node), ...