Dancing Stars on Me

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 186    Accepted Submission(s): 124

Problem Description
The sky was brushed clean by the wind and the stars were cold in a black sky. What a wonderful night. You observed that, sometimes the stars can form a regular polygon in the sky if we connect them properly. You want to record these moments by your smart camera. Of course, you cannot stay awake all night for capturing. So you decide to write a program running on the smart camera to check whether the stars can form a regular polygon and capture these moments automatically.

Formally, a regular polygon is a convex polygon whose angles are all equal and all its sides have the same length. The area of a regular polygon must be nonzero. We say the stars can form a regular polygon if they are exactly the vertices of some regular polygon. To simplify the problem, we project the sky to a two-dimensional plane here, and you just need to check whether the stars can form a regular polygon in this plane.

 
Input
The first line contains a integer T indicating the total number of test cases. Each test case begins with an integer n, denoting the number of stars in the sky. Following n lines, each contains 2 integers xi,yi, describe the coordinates of n stars.

1≤T≤300
3≤n≤100
−10000≤xi,yi≤10000
All coordinates are distinct.

 
Output
For each test case, please output "`YES`" if the stars can form a regular polygon. Otherwise, output "`NO`" (both without quotes).
 
Sample Input
3
3
0 0
1 1
1 0
4
0 0
0 1
1 0
1 1
5
0 0
0 1
0 2
2 2
2 0
 
Sample Output
NO
YES
NO
 
Source
 
题意:问一个多边形是不是正多边形。。。
分析:极角排序后暴力判断就好。。。
正多边形相邻的三个点组成的三角形面积一定相等,且这三个点之间的两条线段长度相等
 #include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <ctime>
#include <iostream>
#include <map>
#include <set>
#include <algorithm>
#include <vector>
#include <deque>
#include <queue>
#include <stack>
using namespace std;
typedef long long LL;
typedef double DB;
#define MIT (2147483647)
#define MLL (1000000000000000001LL)
#define INF (1000000001)
#define For(i, s, t) for(int i = (s); i <= (t); i ++)
#define Ford(i, s, t) for(int i = (s); i >= (t); i --)
#define Rep(i, n) for(int i = (0); i < (n); i ++)
#define Repn(i, n) for(int i = (n)-1; i >= (0); i --)
#define mk make_pair
#define ft first
#define sd second
#define puf push_front
#define pub push_back
#define pof pop_front
#define pob pop_back
#define sz(x) ((int) (x).size())
inline void SetIO(string Name)
{
string Input = Name + ".in";
string Output = Name + ".out";
freopen(Input.c_str(), "r", stdin);
freopen(Output.c_str(), "w", stdout);
} inline int Getint()
{
char ch = ' ';
int Ret = ;
bool Flag = ;
while(!(ch >= '' && ch <= ''))
{
if(ch == '-') Flag ^= ;
ch = getchar();
}
while(ch >= '' && ch <= '')
{
Ret = Ret * + ch - '';
ch = getchar();
}
return Flag ? -Ret : Ret;
} const int N = ;
struct Point
{
int x, y;
} Arr[N];
int n; inline void Solve(); inline void Input()
{
int TestNumber = Getint();
while(TestNumber--)
{
n = Getint();
For(i, , n)
{
Arr[i].x = Getint();
Arr[i].y = Getint();
}
Solve();
}
} inline LL Sqr(int x) {
return 1LL * x * x;
} inline int Multi(const Point &O, const Point &A, const Point &B)
{
int X1 = A.x - O.x, X2 = B.x - O.x, Y1 = A.y - O.y, Y2 = B.y - O.y;
return X1 * Y2 - X2 * Y1;
} inline LL GetDist(const Point &A, const Point &B)
{
return Sqr(B.x - A.x) + Sqr(B.y - A.y);
} inline bool Compare(const Point &A, const Point &B)
{
int Det = Multi(Arr[], A, B);
if(Det) return Det > ;
LL Dist1 = GetDist(Arr[], A), Dist2 = GetDist(Arr[], B);
return Dist1 < Dist2;
} inline void Solve()
{
For(i, , n)
if(Arr[i].x < Arr[].x || (Arr[i].x == Arr[].x && Arr[i].y < Arr[].y))
swap(Arr[i], Arr[]);
sort(Arr + , Arr + + n, Compare); Arr[n + ] = Arr[], Arr[n + ] = Arr[];
bool Flag = ;
int Tmp, Dist;
For(i, , n)
{
int Det = Multi(Arr[i], Arr[i + ], Arr[i + ]);
LL Dist1 = GetDist(Arr[i], Arr[i + ]);
LL Dist2 = GetDist(Arr[i + ], Arr[i + ]);
if(Det <= || Dist1 != Dist2)
{
puts("NO");
return ;
}
if(Flag)
{
if(Tmp != Det || Dist1 != Dist)
{
puts("NO");
return ;
}
}
else Flag = , Tmp = Det, Dist = Dist1;
}
puts("YES");
} int main()
{
Input();
//Solve();
return ;
}

2015ACM/ICPC亚洲区长春站 G hdu 5533 Dancing Stars on Me的更多相关文章

  1. 2015ACM/ICPC亚洲区长春站 F hdu 5533 Almost Sorted Array

    Almost Sorted Array Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Ot ...

  2. 2015ACM/ICPC亚洲区长春站 B hdu 5528 Count a * b

    Count a * b Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Tot ...

  3. 2015ACM/ICPC亚洲区长春站 L hdu 5538 House Building

    House Building Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others) ...

  4. 2015ACM/ICPC亚洲区长春站 J hdu 5536 Chip Factory

    Chip Factory Time Limit: 18000/9000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)T ...

  5. 2015ACM/ICPC亚洲区长春站 H hdu 5534 Partial Tree

    Partial Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)To ...

  6. 2015ACM/ICPC亚洲区长春站 E hdu 5531 Rebuild

    Rebuild Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total S ...

  7. 2015ACM/ICPC亚洲区长春站 A hdu 5527 Too Rich

    Too Rich Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total ...

  8. hdu 5533 Dancing Stars on Me(数学,水)

    Problem Description The sky was brushed clean by the wind and the stars were cold in a black sky. Wh ...

  9. hdu 5533 Dancing Stars on Me

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5533 Dancing Stars on Me Time Limit: 2000/1000 MS (Ja ...

随机推荐

  1. 第11章 使用Vsftpd服务传输文件

    章节简述: 本章节先通过介绍文件传输协议来帮助读者理解FTP协议的用处,安装vsftpd服务程序并逐条分析服务文件的配置参数. 完整演示vsftpd服务匿名访问模式.本地用户模式及虚拟用户模式的配置方 ...

  2. ruby实时查看日志

    (文章是从我的个人主页上粘贴过来的, 大家也可以访问我的主页 www.iwangzheng.com) 在调试代码的时候,把日志文件打开,边操作边调试能很快帮助我们发现系统中存在的问题. $tail r ...

  3. C#中Const和Readonly的区别

    const 的概念就是一个包含不能修改的值的变量.常数表达式是在编译时可被完全计算的表达式.因此不能从一个变量中提取的值来初始化常量.如果 const int a = b+1;b是一个变量,显然不能再 ...

  4. (转)SQL Server 中WITH (NOLOCK)浅析

    概念介绍 开发人员喜欢在SQL脚本中使用WITH(NOLOCK), WITH(NOLOCK)其实是表提示(table_hint)中的一种.它等同于 READUNCOMMITTED . 具体的功能作用如 ...

  5. poj 2739 Sum of Consecutive Prime Numbers 解题报告

    题目链接:http://poj.org/problem?id=2739 预处理出所有10001以内的素数,按照递增顺序存入数组prime[1...total].然后依次处理每个测试数据.采用双重循环计 ...

  6. Java并发编程:Synchronized及其实现原理

    Java并发编程系列: Java 并发编程:核心理论 Java并发编程:Synchronized及其实现原理 Java并发编程:Synchronized底层优化(轻量级锁.偏向锁) Java 并发编程 ...

  7. 昨天用的流量有点多60M

    就是因为值班这里没有无线,然后自己又是受前几次的影响,没有收到微信,然后就看了热点,这是用的快的.

  8. scp 指定端口

    scp -P33033 zp.tar root@111.222.123.01:/da1/web/zhaopin.shouhuobao.com #sshd的端口指定的是33033

  9. Sql server之路 (六)上传服务器图片

    原理: 上传图片的名字 插入到数据库里 上传图片的内容(二进制数据) 写到服务器指定的目录下 下次读取图片的时候 从数据库里的指定字段里读取图片文件名 从数据库的指定路径下 拼串成完成的路径 就可以下 ...

  10. php加密解密

    <?php . [代码][PHP]代码      <?php , ;         return setcookie($name, $value, $expire, $path, $do ...