Dancing Stars on Me

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 186    Accepted Submission(s): 124

Problem Description
The sky was brushed clean by the wind and the stars were cold in a black sky. What a wonderful night. You observed that, sometimes the stars can form a regular polygon in the sky if we connect them properly. You want to record these moments by your smart camera. Of course, you cannot stay awake all night for capturing. So you decide to write a program running on the smart camera to check whether the stars can form a regular polygon and capture these moments automatically.

Formally, a regular polygon is a convex polygon whose angles are all equal and all its sides have the same length. The area of a regular polygon must be nonzero. We say the stars can form a regular polygon if they are exactly the vertices of some regular polygon. To simplify the problem, we project the sky to a two-dimensional plane here, and you just need to check whether the stars can form a regular polygon in this plane.

 
Input
The first line contains a integer T indicating the total number of test cases. Each test case begins with an integer n, denoting the number of stars in the sky. Following n lines, each contains 2 integers xi,yi, describe the coordinates of n stars.

1≤T≤300
3≤n≤100
−10000≤xi,yi≤10000
All coordinates are distinct.

 
Output
For each test case, please output "`YES`" if the stars can form a regular polygon. Otherwise, output "`NO`" (both without quotes).
 
Sample Input
3
3
0 0
1 1
1 0
4
0 0
0 1
1 0
1 1
5
0 0
0 1
0 2
2 2
2 0
 
Sample Output
NO
YES
NO
 
Source
 
题意:问一个多边形是不是正多边形。。。
分析:极角排序后暴力判断就好。。。
正多边形相邻的三个点组成的三角形面积一定相等,且这三个点之间的两条线段长度相等
 #include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <ctime>
#include <iostream>
#include <map>
#include <set>
#include <algorithm>
#include <vector>
#include <deque>
#include <queue>
#include <stack>
using namespace std;
typedef long long LL;
typedef double DB;
#define MIT (2147483647)
#define MLL (1000000000000000001LL)
#define INF (1000000001)
#define For(i, s, t) for(int i = (s); i <= (t); i ++)
#define Ford(i, s, t) for(int i = (s); i >= (t); i --)
#define Rep(i, n) for(int i = (0); i < (n); i ++)
#define Repn(i, n) for(int i = (n)-1; i >= (0); i --)
#define mk make_pair
#define ft first
#define sd second
#define puf push_front
#define pub push_back
#define pof pop_front
#define pob pop_back
#define sz(x) ((int) (x).size())
inline void SetIO(string Name)
{
string Input = Name + ".in";
string Output = Name + ".out";
freopen(Input.c_str(), "r", stdin);
freopen(Output.c_str(), "w", stdout);
} inline int Getint()
{
char ch = ' ';
int Ret = ;
bool Flag = ;
while(!(ch >= '' && ch <= ''))
{
if(ch == '-') Flag ^= ;
ch = getchar();
}
while(ch >= '' && ch <= '')
{
Ret = Ret * + ch - '';
ch = getchar();
}
return Flag ? -Ret : Ret;
} const int N = ;
struct Point
{
int x, y;
} Arr[N];
int n; inline void Solve(); inline void Input()
{
int TestNumber = Getint();
while(TestNumber--)
{
n = Getint();
For(i, , n)
{
Arr[i].x = Getint();
Arr[i].y = Getint();
}
Solve();
}
} inline LL Sqr(int x) {
return 1LL * x * x;
} inline int Multi(const Point &O, const Point &A, const Point &B)
{
int X1 = A.x - O.x, X2 = B.x - O.x, Y1 = A.y - O.y, Y2 = B.y - O.y;
return X1 * Y2 - X2 * Y1;
} inline LL GetDist(const Point &A, const Point &B)
{
return Sqr(B.x - A.x) + Sqr(B.y - A.y);
} inline bool Compare(const Point &A, const Point &B)
{
int Det = Multi(Arr[], A, B);
if(Det) return Det > ;
LL Dist1 = GetDist(Arr[], A), Dist2 = GetDist(Arr[], B);
return Dist1 < Dist2;
} inline void Solve()
{
For(i, , n)
if(Arr[i].x < Arr[].x || (Arr[i].x == Arr[].x && Arr[i].y < Arr[].y))
swap(Arr[i], Arr[]);
sort(Arr + , Arr + + n, Compare); Arr[n + ] = Arr[], Arr[n + ] = Arr[];
bool Flag = ;
int Tmp, Dist;
For(i, , n)
{
int Det = Multi(Arr[i], Arr[i + ], Arr[i + ]);
LL Dist1 = GetDist(Arr[i], Arr[i + ]);
LL Dist2 = GetDist(Arr[i + ], Arr[i + ]);
if(Det <= || Dist1 != Dist2)
{
puts("NO");
return ;
}
if(Flag)
{
if(Tmp != Det || Dist1 != Dist)
{
puts("NO");
return ;
}
}
else Flag = , Tmp = Det, Dist = Dist1;
}
puts("YES");
} int main()
{
Input();
//Solve();
return ;
}

2015ACM/ICPC亚洲区长春站 G hdu 5533 Dancing Stars on Me的更多相关文章

  1. 2015ACM/ICPC亚洲区长春站 F hdu 5533 Almost Sorted Array

    Almost Sorted Array Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Ot ...

  2. 2015ACM/ICPC亚洲区长春站 B hdu 5528 Count a * b

    Count a * b Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Tot ...

  3. 2015ACM/ICPC亚洲区长春站 L hdu 5538 House Building

    House Building Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others) ...

  4. 2015ACM/ICPC亚洲区长春站 J hdu 5536 Chip Factory

    Chip Factory Time Limit: 18000/9000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)T ...

  5. 2015ACM/ICPC亚洲区长春站 H hdu 5534 Partial Tree

    Partial Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)To ...

  6. 2015ACM/ICPC亚洲区长春站 E hdu 5531 Rebuild

    Rebuild Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total S ...

  7. 2015ACM/ICPC亚洲区长春站 A hdu 5527 Too Rich

    Too Rich Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total ...

  8. hdu 5533 Dancing Stars on Me(数学,水)

    Problem Description The sky was brushed clean by the wind and the stars were cold in a black sky. Wh ...

  9. hdu 5533 Dancing Stars on Me

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5533 Dancing Stars on Me Time Limit: 2000/1000 MS (Ja ...

随机推荐

  1. Eleven scrum meeting 2015/11/5

    今日工作情况 小组成员 今日完成的工作 明日待做任务 唐彬 选课和退课模块 测试 赖彦谕 病情较重,请假 病情较重,请假 金哉仁 设计app logo 测试 闫昊 调整课程简介的展示效果 整合各个模块 ...

  2. HDU 1513 Palindrome(最长公共子序列)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1513 解题报告:给定一个长度为n的字符串,在这个字符串中插入最少的字符使得这个字符串成为回文串,求这个 ...

  3. [Effective JavaScript 笔记]第25条:使用bind方法提取具有确定接收者的方法

    js里方法和属性值为函数,就像一个东西两种称呼一个样,比如土豆,也叫马铃薯,一个样.既然一样,那就可以对对象的方法提取出来为函数,然后把提取出来的函数作为回调函数直接传递给高阶函数. 高阶函数是什么 ...

  4. [BZOJ1101][POI2007]Zap

    [BZOJ1101][POI2007]Zap 试题描述 FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd ...

  5. [BZOJ3624][Apio2008]免费道路

    [BZOJ3624][Apio2008]免费道路 试题描述 输入 输出 输入示例 输出示例 数据规模及约定 见“输入”. 题解 第一步,先尽量加入 c = 1 的边,若未形成一个连通块,则得到必须加入 ...

  6. 坚持不懈之linux haproxy 配置文件 详情

    ####################全局配置信息######################## #######参数是进程级的,通常和操作系统(OS)相关######### global maxc ...

  7. Balanced Binary Tree

    Given a binary tree, determine if it is height-balanced. For this problem, a height-balanced binary ...

  8. css行内样式

    <title>归园田居</title> </head> <body> <h2>归园田居</h2> <p>种豆南山下, ...

  9. 【leetcode】Combination Sum II

    Combination Sum II Given a collection of candidate numbers (C) and a target number (T), find all uni ...

  10. Hydra---Linux下的暴力美学

    引自:http://www.cnblogs.com/mchina/archive/2013/01/01/2840815.html 安装:http://www.91ri.org/2867.html yu ...