终于补完NOI2012了好开心~

题目大意:给定一棵树或者环套外向树,求出从中随机选一条简单路径的期望长度,环上点数不超过20。

d[x]表示x的度数,ch[x]表示x孩子个数

up[x]表示x向上走的期望长度,down[x]表示x向下走的期望长度

f[x]表示x的父亲

树的情况:

环套外向树的情况:

先找出环,对于每棵树用之前的方法求出down[]

对环上每个点i顺时针逆时针各走一圈,求出up[i]:

up[i]=sum((i走到j的概率)*(way(i,j)+down[j])*(j往它孩子走的概率))

i走到j的概率分两种情况讨论,

以顺时针为例,

第一步由于要确定是顺时针还是逆时针,所以顺时针走概率为0.5,

之后每一步概率/=(上一个点孩子数+1)

j往它孩子走的概率分两种情况讨论,

以顺时针为例,

每一步向下走概率为该点孩子数/(该点孩子数+1),最后一步由于不可能回到i点,所以向下走概率为1

然后用树的方法求出其它点的up[]

再统计ans即可

没加任何优化居然跑了Rank1…

#include<cstdio>
#define N 100010
inline void read(int&a){char c;while(!(((c=getchar())>='0')&&(c<='9')));a=c-'0';while(((c=getchar())>='0')&&(c<='9'))(a*=10)+=c-'0';}
int n,m,i,j,x,y,z;
int g[N],nxt[N<<1],w[N<<1],v[N<<1],ed,pre[N],ch[N],d[N],fw[N],st,sum;
int cnt,a[N<<1],s[N<<1];
double up[N],down[N],ans,p;
bool vis[N],in[N];
inline void add(int x,int y,int z){d[x]++;v[++ed]=y;w[ed]=z;nxt[ed]=g[x];g[x]=ed;}
void dfs1(int x,int f){
for(int i=g[x];i;i=nxt[i])if(v[i]!=f&&!in[v[i]])dfs1(v[i],x),ch[x]++,down[x]+=down[v[i]]+w[i];
if(ch[x])down[x]/=ch[x];
}
void dfs2(int x,int f){
for(int i=g[x];i;i=nxt[i])if(v[i]!=f&&!in[v[i]]){
up[v[i]]=w[i];
if(d[x]>1)up[v[i]]+=(up[x]*(d[x]-ch[x])+down[x]*ch[x]-w[i]-down[v[i]])/(d[x]-1);
dfs2(v[i],x);
}
}
void find(int x,int f,int l){
if(st)return;
pre[x]=f;fw[x]=l;
if(vis[x]){st=f;return;}
vis[x]=1;
for(int i=g[x];i;i=nxt[i])if(v[i]!=f)find(v[i],x,w[i]);
}
int main(){
for(read(n),read(m);i<m;i++)read(x),read(y),read(z),add(x,y,z),add(y,x,z);
if(m<n)dfs1(1,0),dfs2(1,0);else{
find(1,0,0);
for(in[a[cnt=1]=st]=1,i=pre[st];i!=st;i=pre[i])in[a[++cnt]=i]=1;
for(i=1;i<=cnt;i++)a[i+cnt]=a[i],s[i+1]=s[i+cnt+1]=fw[a[i]];
for(i=1;i<=cnt;i++)dfs1(a[i],0);
for(i=1;i<=cnt;i++){
//i->j
j=i+1;p=0.5;sum=s[j];
up[a[i]]+=p*(sum+down[a[j]])*ch[a[j]]/(ch[a[j]]+1);
p/=ch[a[j]]+1;
for(j=i+2;j<i+cnt-1;j++){
sum+=s[j];
up[a[i]]+=p*(sum+down[a[j]])*ch[a[j]]/(ch[a[j]]+1);
p/=ch[a[j]]+1;
}
j=i+cnt-1;
sum+=s[j];
up[a[i]]+=p*(sum+down[a[j]]);
//j<-i
j=i+cnt-1;p=0.5;sum=s[j+1];
up[a[i]]+=p*(sum+down[a[j]])*ch[a[j]]/(ch[a[j]]+1);
p/=ch[a[j]]+1;
for(j=i+cnt-2;j>i+1;j--){
sum+=s[j+1];
up[a[i]]+=p*(sum+down[a[j]])*ch[a[j]]/(ch[a[j]]+1);
p/=ch[a[j]]+1;
}
j=i+1;
sum+=s[j+1];
up[a[i]]+=p*(sum+down[a[j]]);
}
for(i=1;i<=cnt;i++)dfs2(a[i],0);
}
for(i=1;i<=n;i++)ans+=(down[i]*ch[i]+up[i]*(d[i]-ch[i]))/d[i];
printf("%.5f",ans/n);
return 0;
}

  

NOI2012 : 迷失游乐园的更多相关文章

  1. BZOJ 2878: [Noi2012]迷失游乐园( 树形dp )

    一棵树的话直接树形dp(求出往下走和往上走的期望长度). 假如是环套树, 环上的每棵树自己做一遍树形dp, 然后暴力枚举(环上的点<=20)环上每个点跑经过环上的路径就OK了. -------- ...

  2. 【BZOJ 2878】 2878: [Noi2012]迷失游乐园 (环套树、树形概率DP)

    2878: [Noi2012]迷失游乐园 Description 放假了,小Z觉得呆在家里特别无聊,于是决定一个人去游乐园玩.进入游乐园后,小Z看了看游乐园的地图,发现可以将游乐园抽象成有n个景点.m ...

  3. [bzoj2878][Noi2012]迷失游乐园(基环树dp)

    [bzoj2878][Noi2012]迷失游乐园(基环树dp) bzoj luogu 题意:一颗数或是基环树,随机从某个点开始一直走,不走已经到过的点,求无路可走时的路径长期望. 对于一棵树: 用两个 ...

  4. 2878: [Noi2012]迷失游乐园 - BZOJ

    Description 放假了,小Z觉得呆在家里特别无聊,于是决定一个人去游乐园玩.进入游乐园后,小Z看了看游乐园的地图,发现可以将游乐园抽象成有n个景点.m条道路的无向连通图,且该图中至多有一个环( ...

  5. 【BZOJ 2878】 [Noi2012]迷失游乐园

    Description 放假了,小Z觉得呆在家里特别无聊,于是决定一个人去游乐园玩.进入游乐园后,小Z看了看游乐园的地图,发现可以将游乐园抽象成有n个景点.m条道路的无向连通图,且该图中至多有一个环( ...

  6. BZOJ2878 [Noi2012]迷失游乐园

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  7. bzoj2878 [Noi2012]迷失游乐园 [树形dp]

    Description 放假了,小Z认为呆在家里特别无聊.于是决定一个人去游乐园玩. 进入游乐园后.小Z看了看游乐园的地图,发现能够将游乐园抽象成有n个景点.m条道路的无向连通图,且该图中至多有一个环 ...

  8. [luogu2081 NOI2012] 迷失游乐园 (树形期望dp 基环树)

    传送门 题目描述 放假了,小Z觉得呆在家里特别无聊,于是决定一个人去游乐园玩. 进入游乐园后,小Z看了看游乐园的地图,发现可以将游乐园抽象成有n个景点.m条道路的无向连通图,且该图中至多有一个环(即m ...

  9. bzoj 2878: [Noi2012]迷失游乐园

    #include<iostream> #include<cstring> #include<cstdio> #define M 100005 #define ld ...

随机推荐

  1. 开发jquery tab 插件

    开发最简单的效果- -,基本构架 html,可以换更有意义的结构,这里demo,就简单写,不考虑SEO <div id="tab-hd"> <div class= ...

  2. 一段功能齐全的PHP常用重定向代码html+js+header

    /** * 重定向浏览器到指定的 URL * * @param string $url 要重定向的 url * @param int $delay 等待多少秒以后跳转 * @param bool $j ...

  3. mybatis处理集合、循环、数组和in查询等语句的使用

    在Mybatis的xml配置中使用集合,主要是用到了foreach动态语句. foreach的参数: foreach元素的属性主要有 item,index,collection,open,separa ...

  4. XShell上传下载命令

    参考:https://www.centos.bz/2012/12/xshell-securecrtrz-sz-upload-download/ 上传文件时,执行rz就会弹出文件选择对话框来选择文件.下 ...

  5. svn 设置

    \Release *\Debug *\bin *\Bin *\obj *\_ReSharper* *\.hg *.ReSharper *.resharper *\Generated_Code *\VB ...

  6. Meta Programming

    [本文链接] http://www.cnblogs.com/hellogiser/p/meta-programming.html [分析] Template Mataprogram,中文叫模板元编程. ...

  7. oracle10G/11G官方下载地址集合 直接迅雷下载

    Oracle Database 11g Release 2 (11.2.0.1.0) for Microsoft Windows (64-bit)   http://download.oracle.c ...

  8. Java for LeetCode 060 Permutation Sequence

    The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  9. 重温CSS之背景、文本样式

    CSS背景样式: 背景色:background-color属性,设置元素的背景色,如:div {background:blue;}--设置所有div元素的背景为蓝色: 背景图像:background- ...

  10. Java 复制文件的高效方法

    转载自:http://jingyan.baidu.com/article/ff4116259c2d7712e4823780.html 在Java编程中,复制文件的方法有很多,而且经常要用到.我以前一直 ...