这个系列,重点关注如何实现,至于算法基础,参考Andrew的公开课

相较于线性回归,logistic回归更适合用于分类

因为他使用Sigmoid函数,因为分类的取值是0,1

对于分类,最完美和自然的函数,当然是Heaviside step function,即0-1阶跃函数,但是这个函数中数学上有时候比较难处理

所以用Sigmoid函数来近似模拟阶跃函数,

可以看到Sigmoid在增大坐标尺度后,已经比较接近于阶跃函数

其中,

而logistic回归就是要根据训练集找到,最优的w向量

下面就通过源码来看看如何用梯度下降来解logistic问题,

def loadDataSet():
dataMat = []; labelMat = [] #数组
fr = open('testSet.txt')
for line in fr.readlines():
lineArr = line.strip().split()
dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])]) #加入一个数据点,其中‘1.0’代表截距
labelMat.append(int(lineArr[2])) #每个数据点的lable,用于训练
return dataMat,labelMat def sigmoid(inX):
return 1.0/(1+exp(-inX)) def gradAscent(dataMatIn, classLabels):
dataMatrix = mat(dataMatIn) #首先将array转换为matrix
labelMat = mat(classLabels).transpose() #将lables转秩,因为一个lable对应于dataMatrix中的一行,即一个数据点
m,n = shape(dataMatrix)
alpha = 0.001 #学习率
maxCycles = 500 #迭代次数
weights = ones((n,1)) #初始化weights向量
for k in range(maxCycles):
h = sigmoid(dataMatrix*weights) #这里是矩阵计算,最终h是个列向量,表示每个数据点的预估值
error = (labelMat - h) #和真实值比较,算出error列向量
weights = weights + alpha * dataMatrix.transpose()* error #这个公式是通过梯度下降推导出来的
return weights #获得最终的weights参数

这里需要注意,numpy支持矩阵计算,所以

h = sigmoid(dataMatrix*weights), 其实是完成n×m矩阵和n×1矩阵乘,然后执行n次sigmoid,得到h列向量

至于那个公式,是由于由梯度下降求出的weight迭代公式如下,

得到weights后,进行predict很容易,直接把数据点和weights代入sigmoid函数算出h,以0.5为界近似成0或1

这种原始的梯度下降算法的问题,就是计算量比较大,对于每个weight的迭代都需要遍历数据集一遍,所以如果weight和数据集比较大,很低效

 

stochastic gradient ascent

对于随机梯度下降,每次只用一个数据点来迭代weights

def stocGradAscent0(dataMatrix, classLabels):
m,n = shape(dataMatrix)
alpha = 0.01
weights = ones(n)
for i in range(m):
h = sigmoid(sum(dataMatrix[i]*weights)) #只取一个数据点
error = classLabels[i] - h
weights = weights + alpha * error * dataMatrix[i]
return weights

但这个简单的随机算法有些问题,

首先只迭代训练集一遍,很可能没有达到收敛,所以准确率不够

其次,每次是依次选取数据点,所以weights会产生周期性的波动

最后,收敛速度不够

def stocGradAscent1(dataMatrix, classLabels, numIter=150):
m,n = shape(dataMatrix)
weights = ones(n)
for j in range(numIter): #增加迭代次数
for i in range(m):
alpha = 4/(1.0+j+i)+0.01 #动态改变学习率
randIndex = int(random.uniform(0,len(dataIndex))) #随机选取数据点
h = sigmoid(sum(dataMatrix[randIndex]*weights))
error = classLabels[randIndex] - h
weights = weights + alpha * error * dataMatrix[randIndex]
del(dataIndex[randIndex])
return weights

对于动态改变学习率,

可以看到,学习率会随着迭代次数变大,不断变小,但不会为0,因为有常数项,可以缓解数据波动,并保持多次迭代后仍然对数据有一定的影响

并且当i>>j时,学习略随着迭代次数增加,也不是严格下降的

而随机选取数据点,用于解决周期性波动问题

Machine Learning in Action -- Logistic regression的更多相关文章

  1. [Machine Learning]学习笔记-Logistic Regression

    [Machine Learning]学习笔记-Logistic Regression 模型-二分类任务 Logistic regression,亦称logtic regression,翻译为" ...

  2. Andrew Ng Machine Learning 专题【Logistic Regression & Regularization】

    此文是斯坦福大学,机器学习界 superstar - Andrew Ng 所开设的 Coursera 课程:Machine Learning 的课程笔记. 力求简洁,仅代表本人观点,不足之处希望大家探 ...

  3. CheeseZH: Stanford University: Machine Learning Ex3: Multiclass Logistic Regression and Neural Network Prediction

    Handwritten digits recognition (0-9) Multi-class Logistic Regression 1. Vectorizing Logistic Regress ...

  4. 机器学习---朴素贝叶斯与逻辑回归的区别(Machine Learning Naive Bayes Logistic Regression Difference)

    朴素贝叶斯与逻辑回归的区别: 朴素贝叶斯 逻辑回归 生成模型(Generative model) 判别模型(Discriminative model) 对特征x和目标y的联合分布P(x,y)建模,使用 ...

  5. machine learning(10) -- classification:logistic regression cost function 和 使用 gradient descent to minimize cost function

    logistic regression cost function(single example) 图像分布 logistic regression cost function(m examples) ...

  6. Machine Learning No.3: Logistic Regression

    1. Decision boundary when hθ(x) > 0, g(z) = 1; when hθ(x) < 0, g(z) = 0. so the hyppthesis is: ...

  7. [Machine Learning] 逻辑回归 (Logistic Regression) -分类问题-逻辑回归-正则化

    在之前的问题讨论中,研究的都是连续值,即y的输出是一个连续的值.但是在分类问题中,要预测的值是离散的值,就是预测的结果是否属于某一个类.例如:判断一封电子邮件是否是垃圾邮件:判断一次金融交易是否是欺诈 ...

  8. 机器学习实战(Machine Learning in Action)学习笔记————05.Logistic回归

    机器学习实战(Machine Learning in Action)学习笔记————05.Logistic回归 关键字:Logistic回归.python.源码解析.测试作者:米仓山下时间:2018- ...

  9. 《Machine Learning in Action》—— Taoye给你讲讲Logistic回归是咋回事

    在手撕机器学习系列文章的上一篇,我们详细讲解了线性回归的问题,并且最后通过梯度下降算法拟合了一条直线,从而使得这条直线尽可能的切合数据样本集,已到达模型损失值最小的目的. 在本篇文章中,我们主要是手撕 ...

随机推荐

  1. HTML5标准学习 – DOCTYPE

    转自:http://www.cnblogs.com/GrayZhang/archive/2011/03/31/learning-html5-doctype.html 上一篇文章主要讲述了HTML文档的 ...

  2. web的三种监听器

    servletcontextlistener servletrequestlistener httpsessionlistener

  3. HTML-Canvas01

    画直线: var c = document.getElementById("myCanvas"); //不要忘写document var ctx = c.getContext(&q ...

  4. 简单几何(线段相交) POJ 1066 Treasure Hunt

    题目传送门 题意:从四面任意点出发,有若干障碍门,问最少要轰掉几扇门才能到达终点 分析:枚举入口点,也就是线段的两个端点,然后选取与其他线段相交点数最少的 + 1就是答案.特判一下n == 0的时候 ...

  5. Catching Fish[HDU1077]

    Catching Fish Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)To ...

  6. HDU 1242 (BFS搜索+优先队列)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1242 题目大意:多个起点到一个终点,普通点耗时1,特殊点耗时2,求到达终点的最少耗时. 解题思路: ...

  7. tyvj100题留念

    全是水题萌萌哒~0~... 留个纪念

  8. oracle系列--第五篇 PLSQL连接本地的Oracle数据库

    这篇blog主要是针对新手,我也是个新手:) 我们把oracle成功的安装在了我们的计算机上面,那我们如何才能将PLSQL developer连 接到本地的oracle呢? 首先,我们必须有下面步准备 ...

  9. Linux_屏蔽360、scanv、QQ管家等IP扫描

    vi banip.sh #!/bin/bash echo "banip" iptables -A INPUT -s 221.204.203.0/24 -j DROP iptable ...

  10. SpringMVC_The resource identified by this request is only capable of generating responses with characteristics

    今天在调试springMVC的时候,在将一个对象返回为json串的时候,浏览器中出现异常: The resource identified by this request is only capabl ...