传送门:http://codeforces.com/problemset/problem/711/C

题目:

C. Coloring Trees
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

ZS the Coder and Chris the Baboon has arrived at Udayland! They walked in the park where n trees grow. They decided to be naughty and color the trees in the park. The trees are numbered with integers from 1 to n from left to right.

Initially, tree i has color ci. ZS the Coder and Chris the Baboon recognizes only m different colors, so 0 ≤ ci ≤ m, where ci = 0 means that tree i is uncolored.

ZS the Coder and Chris the Baboon decides to color only the uncolored trees, i.e. the trees with ci = 0. They can color each of them them in any of the m colors from 1 to m. Coloring the i-th tree with color j requires exactly pi, j litres of paint.

The two friends define the beauty of a coloring of the trees as the minimum number of contiguous groups (each group contains some subsegment of trees) you can split all the n trees into so that each group contains trees of the same color. For example, if the colors of the trees from left to right are 2, 1, 1, 1, 3, 2, 2, 3, 1, 3, the beauty of the coloring is 7, since we can partition the trees into 7 contiguous groups of the same color : {2}, {1, 1, 1}, {3}, {2, 2}, {3}, {1}, {3}.

ZS the Coder and Chris the Baboon wants to color all uncolored trees so that the beauty of the coloring is exactly k. They need your help to determine the minimum amount of paint (in litres) needed to finish the job.

Please note that the friends can't color the trees that are already colored.

Input

The first line contains three integers, nm and k (1 ≤ k ≤ n ≤ 100, 1 ≤ m ≤ 100) — the number of trees, number of colors and beauty of the resulting coloring respectively.

The second line contains n integers c1, c2, ..., cn (0 ≤ ci ≤ m), the initial colors of the trees. ci equals to 0 if the tree number i is uncolored, otherwise the i-th tree has color ci.

Then n lines follow. Each of them contains m integers. The j-th number on the i-th of them line denotes pi, j (1 ≤ pi, j ≤ 109) — the amount of litres the friends need to color i-th tree with color jpi, j's are specified even for the initially colored trees, but such trees still can't be colored.

Output

Print a single integer, the minimum amount of paint needed to color the trees. If there are no valid tree colorings of beauty k, print  - 1.

Examples
input
3 2 2
0 0 0
1 2
3 4
5 6
output
10
input
3 2 2
2 1 2
1 3
2 4
3 5
output
-1
input
3 2 2
2 0 0
1 3
2 4
3 5
output
5
input
3 2 3
2 1 2
1 3
2 4
3 5
output
0
Note

In the first sample case, coloring the trees with colors 2, 1, 1 minimizes the amount of paint used, which equals to 2 + 3 + 5 = 10. Note that 1, 1, 1 would not be valid because the beauty of such coloring equals to 1 ({1, 1, 1} is a way to group the trees into a single group of the same color).

In the second sample case, all the trees are colored, but the beauty of the coloring is 3, so there is no valid coloring, and the answer is  - 1.

In the last sample case, all the trees are colored and the beauty of the coloring matches k, so no paint is used and the answer is 0.

思路:dp!dp[i][j][k]表示前i棵树中,第i棵树以涂了第j种颜色时,并此时分成了k个部分的最小花费。

  状态转移方程见代码吧,太麻烦了!

  状态转移时,只与dp[i-1][j][k]有关,之前的涂了什么颜色都不用管。

  n^4方的算法,249MS过的

代码:

#include <bits/stdc++.h>
#define PB push_back
#define MP make_pair
using namespace std;
typedef long long LL;
typedef pair<int,int> PII;
#define PI acos((double)-1)
#define E exp(double(1))
const int K=+;
const long long maxn=1e18;
LL v[K][K],dp[K][K][K],c[K],ans=maxn;
int n,m,kk;
int main(void)
{
cin>>n>>m>>kk;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
for(int k=;k<=n;k++)
dp[i][j][k]=maxn;
for(int i=;i<=n;i++)
scanf("%lld",&c[i]);
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
scanf("%lld",&v[i][j]);
if(c[])
dp[][c[]][]=;
else
for(int i=;i<=m;i++)
dp[][i][]=v[][i];
for(int i=;i<=n;i++)
if(c[i])
{
for(int j=;j<=m;j++)
for(int k=;k<=n;k++)if(dp[i-][j][k]!=maxn)
if(j==c[i]) dp[i][c[i]][k]=min(dp[i][c[i]][k],dp[i-][j][k]);
else dp[i][c[i]][k+]=min(dp[i][c[i]][k+],dp[i-][j][k]);
}
else
{
for(int j=;j<=m;j++)
for(int k=;k<=m;k++)
for(int p=;p<=n;p++)if(dp[i-][k][p]!=maxn)
if(k==j)dp[i][j][p]=min(dp[i][j][p],dp[i-][k][p]+v[i][j]);
else dp[i][j][p+]=min(dp[i-][k][p]+v[i][j],dp[i][j][p+]);
}
for(int i=;i<=m;i++)
ans=min(dp[n][i][kk],ans);
if(ans==1e18)
printf("-1\n");
else
printf("%lld\n",ans);
return ;
}

C. Coloring Trees DP的更多相关文章

  1. Codeforces Round #369 (Div. 2) C. Coloring Trees DP

    C. Coloring Trees   ZS the Coder and Chris the Baboon has arrived at Udayland! They walked in the pa ...

  2. CodeForces #369 C. Coloring Trees DP

    题目链接:C. Coloring Trees 题意:给出n棵树的颜色,有些树被染了,有些没有.现在让你把没被染色的树染色.使得beauty = k.问,最少使用的颜料是多少.   K:连续的颜色为一组 ...

  3. codeforces 711C C. Coloring Trees(dp)

    题目链接: C. Coloring Trees time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  4. Codeforces 677C. Coloring Trees dp

    C. Coloring Trees time limit per test:2 seconds memory limit per test:256 megabytes input:standard i ...

  5. Codeforces 711 C. Coloring Trees (dp)

    题目链接:http://codeforces.com/problemset/problem/711/C 给你n棵树,m种颜色,k是指定最后的完美值.接下来一行n个数 表示1~n树原本的颜色,0的话就是 ...

  6. CodeForces 711C Coloring Trees (DP)

    题意:给定n棵树,其中有一些已经涂了颜色,然后让你把没有涂色的树涂色使得所有的树能够恰好分成k组,让你求最少的花费是多少. 析:这是一个DP题,dp[i][j][k]表示第 i 棵树涂第 j 种颜色恰 ...

  7. Codeforces Round #369 (Div. 2) C. Coloring Trees(dp)

    Coloring Trees Problem Description: ZS the Coder and Chris the Baboon has arrived at Udayland! They ...

  8. Codeforces Round #369 (Div. 2) C. Coloring Trees (DP)

    C. Coloring Trees time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  9. Code Forces 711C Coloring Trees

    C. Coloring Trees time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

随机推荐

  1. 最小生成树Kruskal算法(邻接矩阵和邻接表)

    最小生成树,克鲁斯卡尔算法. 算法简述: 将每个顶点看成一个图. 在所有图中找权值最小的边.将这条边的两个图连成一个图, 重复上一步.直到只剩一个图. 注:将abcdef每个顶点看成一个图.将最小权值 ...

  2. Java Web Cookie

    一.什么是cookie? 1.Cookie能使站点跟踪特定访问者的访问次数.最后访问时间和访问者进入站点的路径 2.Cookie能告诉在线广告商广告被点击的次数,从而可以更精确的投放广告 3.Cook ...

  3. 调用另一个Activity

    <转>调用另一个Activity Intent对象的使用 范例说明 前一个范例介绍了如何运用切换Layout的方式,进行手机页面间的转换.如果要转换的页面并不单只是背景.颜色或文字内容的不 ...

  4. JS创建对象、继承原型、ES6中class继承

    面向对象编程:java中对象的两个基本概念:1.类:类是对象的模板,比如说Leader 这个是泛称领导,并不特指谁.2:实例:实例是根据类创建的对象,根据类Leader可以创建出很多实例:liyi,y ...

  5. iOS扫一扫功能开发

    之前很多二维码扫描都是基于zxing做的,但是zxing用起来真的很麻烦,又一直不更新.随着iOS6退出历史舞台,终于可以使用iOS7以后,用系统的AVFoundation做的二维码扫描器了. 初始化 ...

  6. iOS之 Mac下抓包工具使用wireshark

    主要是mac上面网卡的授权 分三个步骤:    1.wireshark安装        wireshark运行需要mac上安装X11,mac 10.8的系统上默认是没有X11的.先去http://x ...

  7. Volley源码分析(1)----Volley 队列

    Android网络框架很多,但是基于Google自己的volley,无疑是优秀的一款. 网络框架,无外乎解决一下几个问题,队列,缓存,图片异步加载,统一的网络请求和处理等. 一.Volley 队列 启 ...

  8. 测试管理_测试人员招聘[持续更新ing]

    招聘之难,难于上青天. 如何招聘到一位称心如意的员工想必是每个公司和管理者都要面临而且头疼的问题.尤其在初建团队或团队缺人的情况下问题会显得更加严重. 作为一个测试管理者,如何招聘到合适的测试人员是必 ...

  9. debian和ubuntu的sh dash bash

    Ubuntu和debian 的 shell 默认安装的是 dash,而不是 bash.运行以下命令查看 sh 的详细信息,确认 shell 对应的程序是哪个:$ls -al /bin/sh dash ...

  10. Remoting和Webservice的区别

    其实现的原理并没有本质的区别,在应用开发层面上有以下区别:1.Remoting可以灵活的定义其所基于的协议,如果定义为HTTP,则与Web Service就没有什么区别了,一般都喜欢定义为TCP,这样 ...