传送门:http://codeforces.com/problemset/problem/711/C

题目:

C. Coloring Trees
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

ZS the Coder and Chris the Baboon has arrived at Udayland! They walked in the park where n trees grow. They decided to be naughty and color the trees in the park. The trees are numbered with integers from 1 to n from left to right.

Initially, tree i has color ci. ZS the Coder and Chris the Baboon recognizes only m different colors, so 0 ≤ ci ≤ m, where ci = 0 means that tree i is uncolored.

ZS the Coder and Chris the Baboon decides to color only the uncolored trees, i.e. the trees with ci = 0. They can color each of them them in any of the m colors from 1 to m. Coloring the i-th tree with color j requires exactly pi, j litres of paint.

The two friends define the beauty of a coloring of the trees as the minimum number of contiguous groups (each group contains some subsegment of trees) you can split all the n trees into so that each group contains trees of the same color. For example, if the colors of the trees from left to right are 2, 1, 1, 1, 3, 2, 2, 3, 1, 3, the beauty of the coloring is 7, since we can partition the trees into 7 contiguous groups of the same color : {2}, {1, 1, 1}, {3}, {2, 2}, {3}, {1}, {3}.

ZS the Coder and Chris the Baboon wants to color all uncolored trees so that the beauty of the coloring is exactly k. They need your help to determine the minimum amount of paint (in litres) needed to finish the job.

Please note that the friends can't color the trees that are already colored.

Input

The first line contains three integers, nm and k (1 ≤ k ≤ n ≤ 100, 1 ≤ m ≤ 100) — the number of trees, number of colors and beauty of the resulting coloring respectively.

The second line contains n integers c1, c2, ..., cn (0 ≤ ci ≤ m), the initial colors of the trees. ci equals to 0 if the tree number i is uncolored, otherwise the i-th tree has color ci.

Then n lines follow. Each of them contains m integers. The j-th number on the i-th of them line denotes pi, j (1 ≤ pi, j ≤ 109) — the amount of litres the friends need to color i-th tree with color jpi, j's are specified even for the initially colored trees, but such trees still can't be colored.

Output

Print a single integer, the minimum amount of paint needed to color the trees. If there are no valid tree colorings of beauty k, print  - 1.

Examples
input
3 2 2
0 0 0
1 2
3 4
5 6
output
10
input
3 2 2
2 1 2
1 3
2 4
3 5
output
-1
input
3 2 2
2 0 0
1 3
2 4
3 5
output
5
input
3 2 3
2 1 2
1 3
2 4
3 5
output
0
Note

In the first sample case, coloring the trees with colors 2, 1, 1 minimizes the amount of paint used, which equals to 2 + 3 + 5 = 10. Note that 1, 1, 1 would not be valid because the beauty of such coloring equals to 1 ({1, 1, 1} is a way to group the trees into a single group of the same color).

In the second sample case, all the trees are colored, but the beauty of the coloring is 3, so there is no valid coloring, and the answer is  - 1.

In the last sample case, all the trees are colored and the beauty of the coloring matches k, so no paint is used and the answer is 0.

思路:dp!dp[i][j][k]表示前i棵树中,第i棵树以涂了第j种颜色时,并此时分成了k个部分的最小花费。

  状态转移方程见代码吧,太麻烦了!

  状态转移时,只与dp[i-1][j][k]有关,之前的涂了什么颜色都不用管。

  n^4方的算法,249MS过的

代码:

#include <bits/stdc++.h>
#define PB push_back
#define MP make_pair
using namespace std;
typedef long long LL;
typedef pair<int,int> PII;
#define PI acos((double)-1)
#define E exp(double(1))
const int K=+;
const long long maxn=1e18;
LL v[K][K],dp[K][K][K],c[K],ans=maxn;
int n,m,kk;
int main(void)
{
cin>>n>>m>>kk;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
for(int k=;k<=n;k++)
dp[i][j][k]=maxn;
for(int i=;i<=n;i++)
scanf("%lld",&c[i]);
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
scanf("%lld",&v[i][j]);
if(c[])
dp[][c[]][]=;
else
for(int i=;i<=m;i++)
dp[][i][]=v[][i];
for(int i=;i<=n;i++)
if(c[i])
{
for(int j=;j<=m;j++)
for(int k=;k<=n;k++)if(dp[i-][j][k]!=maxn)
if(j==c[i]) dp[i][c[i]][k]=min(dp[i][c[i]][k],dp[i-][j][k]);
else dp[i][c[i]][k+]=min(dp[i][c[i]][k+],dp[i-][j][k]);
}
else
{
for(int j=;j<=m;j++)
for(int k=;k<=m;k++)
for(int p=;p<=n;p++)if(dp[i-][k][p]!=maxn)
if(k==j)dp[i][j][p]=min(dp[i][j][p],dp[i-][k][p]+v[i][j]);
else dp[i][j][p+]=min(dp[i-][k][p]+v[i][j],dp[i][j][p+]);
}
for(int i=;i<=m;i++)
ans=min(dp[n][i][kk],ans);
if(ans==1e18)
printf("-1\n");
else
printf("%lld\n",ans);
return ;
}

C. Coloring Trees DP的更多相关文章

  1. Codeforces Round #369 (Div. 2) C. Coloring Trees DP

    C. Coloring Trees   ZS the Coder and Chris the Baboon has arrived at Udayland! They walked in the pa ...

  2. CodeForces #369 C. Coloring Trees DP

    题目链接:C. Coloring Trees 题意:给出n棵树的颜色,有些树被染了,有些没有.现在让你把没被染色的树染色.使得beauty = k.问,最少使用的颜料是多少.   K:连续的颜色为一组 ...

  3. codeforces 711C C. Coloring Trees(dp)

    题目链接: C. Coloring Trees time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  4. Codeforces 677C. Coloring Trees dp

    C. Coloring Trees time limit per test:2 seconds memory limit per test:256 megabytes input:standard i ...

  5. Codeforces 711 C. Coloring Trees (dp)

    题目链接:http://codeforces.com/problemset/problem/711/C 给你n棵树,m种颜色,k是指定最后的完美值.接下来一行n个数 表示1~n树原本的颜色,0的话就是 ...

  6. CodeForces 711C Coloring Trees (DP)

    题意:给定n棵树,其中有一些已经涂了颜色,然后让你把没有涂色的树涂色使得所有的树能够恰好分成k组,让你求最少的花费是多少. 析:这是一个DP题,dp[i][j][k]表示第 i 棵树涂第 j 种颜色恰 ...

  7. Codeforces Round #369 (Div. 2) C. Coloring Trees(dp)

    Coloring Trees Problem Description: ZS the Coder and Chris the Baboon has arrived at Udayland! They ...

  8. Codeforces Round #369 (Div. 2) C. Coloring Trees (DP)

    C. Coloring Trees time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  9. Code Forces 711C Coloring Trees

    C. Coloring Trees time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

随机推荐

  1. platform总线globalfifo驱动

    功能是使用内存的4k单元,实现读,写,偏移,清除. /************************************************************************* ...

  2. KMP的原理详细讲解

    1.kmp算法的原理: 本部分内容转自:http://www.cnblogs.com/c-cloud/p/3224788.html及                           http:// ...

  3. 【洛谷 P3385】模板-负环(图论--spfa)

    题目:有一个图有N个顶点,M条边.边用三个整数a b w表示,意思为a->b有一条权值为w的边(若w<0则为单向,否则双向).共T组数据.对于每组数据,存在负环则输出一行"YE5 ...

  4. Jquery_Ajax GET方式传递文本

    第一个网页: <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www. ...

  5. HTML · 图片热点,网页划区,拼接,表单

    图片热点: 规划出图片上的一个区域,可以做出超链接,直接点击图片区域就可以完成跳转的效果. 网页划区: 在一个网页里,规划出一个区域用来展示另一个网页的内容. 网页的拼接: 在一个网络页面内,规划出多 ...

  6. [CLK Framework] CLK.Settings - 跨平台的参数存取模块

    [CLK Framework] CLK.Settings - 跨平台的参数存取模块 问题情景 开发功能模块的时候,常常免不了有一些参数(例如ConnectionString),需要存放在Config檔 ...

  7. Android studio 快捷添加构造方法以及set与get

    第一种方式 快捷键: Alt + lnsert (笔记本可能没有后面的按键) 按快捷键会出现下面这个页面: 第二种方式:点开后是跳出上面那个选择框

  8. ASP.NET MVC:窗体身份验证及角色权限管理示例

    ASP.NET MVC 建立 ASP.NET 基础之上,很多 ASP.NET 的特性(如窗体身份验证.成员资格)在 MVC 中可以直接使用.本文旨在提供可参考的代码,不会涉及这方面太多理论的知识. 本 ...

  9. ASP.NET页面动态添加js脚本

    有时我们需要生成自己的JavaScript代码并在运行时动态添加到页面,接下来我们来看一下如何将生成的JavaScript代码动态添加到ASP.NET页面. 为了添加脚本,要将自定义的脚本在一个字符串 ...

  10. 复杂对象的本地化(以Person为例)

    Person.h #import <Foundation/Foundation.h> @interface Person : NSObject <NSCoding> /// 姓 ...