C. Coloring Trees DP
传送门:http://codeforces.com/problemset/problem/711/C
题目:
2 seconds
256 megabytes
standard input
standard output
ZS the Coder and Chris the Baboon has arrived at Udayland! They walked in the park where n trees grow. They decided to be naughty and color the trees in the park. The trees are numbered with integers from 1 to n from left to right.
Initially, tree i has color ci. ZS the Coder and Chris the Baboon recognizes only m different colors, so 0 ≤ ci ≤ m, where ci = 0 means that tree i is uncolored.
ZS the Coder and Chris the Baboon decides to color only the uncolored trees, i.e. the trees with ci = 0. They can color each of them them in any of the m colors from 1 to m. Coloring the i-th tree with color j requires exactly pi, j litres of paint.
The two friends define the beauty of a coloring of the trees as the minimum number of contiguous groups (each group contains some subsegment of trees) you can split all the n trees into so that each group contains trees of the same color. For example, if the colors of the trees from left to right are 2, 1, 1, 1, 3, 2, 2, 3, 1, 3, the beauty of the coloring is 7, since we can partition the trees into 7 contiguous groups of the same color : {2}, {1, 1, 1}, {3}, {2, 2}, {3}, {1}, {3}.
ZS the Coder and Chris the Baboon wants to color all uncolored trees so that the beauty of the coloring is exactly k. They need your help to determine the minimum amount of paint (in litres) needed to finish the job.
Please note that the friends can't color the trees that are already colored.
The first line contains three integers, n, m and k (1 ≤ k ≤ n ≤ 100, 1 ≤ m ≤ 100) — the number of trees, number of colors and beauty of the resulting coloring respectively.
The second line contains n integers c1, c2, ..., cn (0 ≤ ci ≤ m), the initial colors of the trees. ci equals to 0 if the tree number i is uncolored, otherwise the i-th tree has color ci.
Then n lines follow. Each of them contains m integers. The j-th number on the i-th of them line denotes pi, j (1 ≤ pi, j ≤ 109) — the amount of litres the friends need to color i-th tree with color j. pi, j's are specified even for the initially colored trees, but such trees still can't be colored.
Print a single integer, the minimum amount of paint needed to color the trees. If there are no valid tree colorings of beauty k, print - 1.
3 2 2
0 0 0
1 2
3 4
5 6
10
3 2 2
2 1 2
1 3
2 4
3 5
-1
3 2 2
2 0 0
1 3
2 4
3 5
5
3 2 3
2 1 2
1 3
2 4
3 5
0
In the first sample case, coloring the trees with colors 2, 1, 1 minimizes the amount of paint used, which equals to 2 + 3 + 5 = 10. Note that 1, 1, 1 would not be valid because the beauty of such coloring equals to 1 ({1, 1, 1} is a way to group the trees into a single group of the same color).
In the second sample case, all the trees are colored, but the beauty of the coloring is 3, so there is no valid coloring, and the answer is - 1.
In the last sample case, all the trees are colored and the beauty of the coloring matches k, so no paint is used and the answer is 0.
思路:dp!dp[i][j][k]表示前i棵树中,第i棵树以涂了第j种颜色时,并此时分成了k个部分的最小花费。
状态转移方程见代码吧,太麻烦了!
状态转移时,只与dp[i-1][j][k]有关,之前的涂了什么颜色都不用管。
n^4方的算法,249MS过的
代码:
#include <bits/stdc++.h>
#define PB push_back
#define MP make_pair
using namespace std;
typedef long long LL;
typedef pair<int,int> PII;
#define PI acos((double)-1)
#define E exp(double(1))
const int K=+;
const long long maxn=1e18;
LL v[K][K],dp[K][K][K],c[K],ans=maxn;
int n,m,kk;
int main(void)
{
cin>>n>>m>>kk;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
for(int k=;k<=n;k++)
dp[i][j][k]=maxn;
for(int i=;i<=n;i++)
scanf("%lld",&c[i]);
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
scanf("%lld",&v[i][j]);
if(c[])
dp[][c[]][]=;
else
for(int i=;i<=m;i++)
dp[][i][]=v[][i];
for(int i=;i<=n;i++)
if(c[i])
{
for(int j=;j<=m;j++)
for(int k=;k<=n;k++)if(dp[i-][j][k]!=maxn)
if(j==c[i]) dp[i][c[i]][k]=min(dp[i][c[i]][k],dp[i-][j][k]);
else dp[i][c[i]][k+]=min(dp[i][c[i]][k+],dp[i-][j][k]);
}
else
{
for(int j=;j<=m;j++)
for(int k=;k<=m;k++)
for(int p=;p<=n;p++)if(dp[i-][k][p]!=maxn)
if(k==j)dp[i][j][p]=min(dp[i][j][p],dp[i-][k][p]+v[i][j]);
else dp[i][j][p+]=min(dp[i-][k][p]+v[i][j],dp[i][j][p+]);
}
for(int i=;i<=m;i++)
ans=min(dp[n][i][kk],ans);
if(ans==1e18)
printf("-1\n");
else
printf("%lld\n",ans);
return ;
}
C. Coloring Trees DP的更多相关文章
- Codeforces Round #369 (Div. 2) C. Coloring Trees DP
C. Coloring Trees ZS the Coder and Chris the Baboon has arrived at Udayland! They walked in the pa ...
- CodeForces #369 C. Coloring Trees DP
题目链接:C. Coloring Trees 题意:给出n棵树的颜色,有些树被染了,有些没有.现在让你把没被染色的树染色.使得beauty = k.问,最少使用的颜料是多少. K:连续的颜色为一组 ...
- codeforces 711C C. Coloring Trees(dp)
题目链接: C. Coloring Trees time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- Codeforces 677C. Coloring Trees dp
C. Coloring Trees time limit per test:2 seconds memory limit per test:256 megabytes input:standard i ...
- Codeforces 711 C. Coloring Trees (dp)
题目链接:http://codeforces.com/problemset/problem/711/C 给你n棵树,m种颜色,k是指定最后的完美值.接下来一行n个数 表示1~n树原本的颜色,0的话就是 ...
- CodeForces 711C Coloring Trees (DP)
题意:给定n棵树,其中有一些已经涂了颜色,然后让你把没有涂色的树涂色使得所有的树能够恰好分成k组,让你求最少的花费是多少. 析:这是一个DP题,dp[i][j][k]表示第 i 棵树涂第 j 种颜色恰 ...
- Codeforces Round #369 (Div. 2) C. Coloring Trees(dp)
Coloring Trees Problem Description: ZS the Coder and Chris the Baboon has arrived at Udayland! They ...
- Codeforces Round #369 (Div. 2) C. Coloring Trees (DP)
C. Coloring Trees time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...
- Code Forces 711C Coloring Trees
C. Coloring Trees time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...
随机推荐
- jsp页面 列表 展示 ajax异步实现
1. 服务端先返回页面基本结构(如message.jsp), <%@ page language="java" contentType="text/html; ch ...
- C语言范例学习03-下
树与图 3.5 二叉树及其应用 PS:二叉树是最经典的树形结构,适合计算机处理,具有存储方便和操作灵活等特点,而且任何树都可以转换成二叉树. 实例101 二叉树的递归创建 实例102 二叉树的遍历 问 ...
- 环境搭建二 secureCRT配置
上一篇里面讲到了虚拟机安装,以及secureCRT的远程连接.此篇文章介绍secureCRT的配置. 颜色设置 参考 http://jingyan.baidu.com/article/a681b0 ...
- 缓存技术比拼:Redis与Memcached的同与不同
转至:http://developer.51cto.com/art/201603/507980.htm 在今天的文章中,我们将探讨Redis(REmote DIctionary Server).Red ...
- Thumbnailator压缩图片
Thumbnailator是一款不可多得的处理图片的第三方工具包,它写法简单到让人无法相信,Java本身也有处理图片压缩的方法,但是代码冗长到让人痛不欲生,在篇末会给出Java本身的实现方式,做下对比 ...
- QT5中全屏显示子窗口和取消全屏的方法
问题描述:用QT5做了个MDI多窗体应用程序,想把子窗体全屏显示,用网上的方法,但总是遇到问题. 网上的解决方法原文在这:http://www.cnblogs.com/Rick-w/archive/2 ...
- sql和access中截取字符串的区别
一向对数据库不熟悉,今天又遇到简单而又被忽略的问题——字符串的截取. 在Excel处理数据过程中,我们常用substring,left,mid,right来截取字符:在.NET编程中,我们常用subs ...
- 转:纠结的Shim
原文地址:http://www.haorooms.com/post/requirejs_sy_lj RequireJs已经流行很久了,它提供了以下功能: 声明不同js文件之间的依赖 可以按需.并行.延 ...
- 【转】Android Studio中通过快捷键来提取提取方法
今天来给大家介绍一个非常有用的Studio Tips,有些时候我们在一个方法内部写了过多的代码,然后想要把一些代码提取出来再放在一个单独的方法里,通常我们的做法是复制粘贴,现在我来教给大家一个非常简洁 ...
- 去掉 Android工程中让人很不爽的“黄色警告”
一:问题 二:解决方法 (1)选择android工程,右键Android Tools —> Clear Lint Markers 这种方式能够清除android工程里面的所有警告信息 ...