项目中使用的hive版本低于0.11,无法使用hive在0.11中新加的开窗分析函数。

在项目中需要使用到row_number()函数的地方,有人写了udf来实现这个功能。

new java project, BuildPath add hadoop-core..jar and hive-exec…jar。

package myudf;

import java.util.Arrays;

import org.apache.hadoop.hive.ql.exec.UDF;

public final class rank extends UDF {
private int counter; private String[] _paras = null; public int evaluate(String... paras) {
if (_paras != null && Arrays.equals(_paras, paras)) {
this.counter++;
} else {
this.counter = 1;
//_paras = paras;
            copy(paras);
}
return this.counter;
}
   
 void copy(String[] paras)
 {
   if(null == paras){_paras=null;}
else {_paras= new String[paras.length];
for(int i=;i<paras.length;i++)
  _paras[i]=paras[i];
    }
 } }

创建辅助表的数据文件:

i=0;
while [ $i -ne 1000 ]
do
echo -e "$i" >>nums.txt;
i=$(($i +1));
done

这个数字辅助表在辅助生成数据时比较有用。

在hive中创建nums表并加载刚才创建的示例数据;

hive -e "create table nums(num int) row format delimited stored as textfile;"
hive -e "load data local inpath '/home/hadoop/data/nums.txt' overwrite into table nums;"

使用辅助表生成数据:

hive -e "create table myaccount as select 'account1' as account, 'evan' as maker, rand()*10000 as trans_amount from nums a join nums b;"

insert overwrite  table myaccount
select a.*
from myaccount a
join
(select * from nums where num <10) b;
--check file has how many blocks
insert overwrite table myaccount
select a.*
from myaccount a order by account,maker;

这样这个表的数据大概有三百M左右了。

默认情况下使用hive跑就要使用2个maper来处理了。

把刚才的java project打包并上传到HDFS 以供hive使用,

hadoop fs -mkdir /user/hive/warehouse/udf/;
hadoop fs -copyFromLocal /home/hadoop/jar/myhiveudf.jar /user/hive/warehouse/udf/;
add jar hdfs:/user/hive/warehouse/udf/myhiveudf.jar;
create temporary function myrank as "myudf.rank";

使用hive的udf进行数据测试:

create table myaccountrank as select account,maker,trans_amount,myrank(account,maker) as rank1 from myaccount;

按我们的数据情况来看,我们想要的结果是max(rank1)=1000000;但是实际结果却是:8348163;

原因是在执行create table的时候,使用了两个mapper去处理结果,这样相同的account 和 maker 被拆分给两个map task去处理,这样算出来的结果就是有问题的。

问题是hive udf是如何确定执行在map phase还是reduce phase呢?

udf分为udaf,udtf和普通的udf,现在看来我们普通的udf直接就在map阶段完成了,而udfa应该会在reduce阶段完成。

同样的需求,如果我们正确地去做,可以使用hive自带的row_number去做,如下:

create table myaccountrank2 as select account,maker,trans_amount,row_number() over(partition by account,maker order by account,maker ) as rank1 from myaccount;
执行的时候,显示需要两个mapper,一个reduce来处理。第一次处理的时候报了java heap space error.
set mapred.child.java.opts;  --default 200M
调整此参数至1G:set mapred.child.java.opts =  -Xmx1024m;
再次执行完成。
其他常用参数:
set mapred.max.split.size; ---256M
hive.merge.mapfiles = true; --是否和并 Map 输出文件,默认为 True
set hive.merge.mapredfiles;
hive.merge.mapredfiles = false; --是否合并 Reduce 输出文件,默认为 False
set hive.merge.size.per.task;
hive.merge.size.per.task = 256*1000*1000; --合并文件的大小
set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;

set hive.input.format;
hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat :default value

查看全部的参数可以使用命令:set –v;

网上找到的其他的hive tips,未测试,需要在实践中修正,引用如下:

1.尽量尽早地过滤数据,减少每个阶段的数据量,对于分区表要加分区,同时只选择需要使用到的字段

2.尽量原子化操作,尽量避免一个SQL包含复杂逻辑,可以使用中间表来完成复杂的逻辑  
3.join操作  小表要注意放在join的左边.可以指定使用map join,如果有小表。

4.如果union all的部分个数大于2,或者每个union部分数据量大,应该拆成多个insert into 语句,实际测试过程中,执行时间能提升50%

5.写SQL要先了解数据本身的特点,如果有join ,group操作的话,要注意是否会有数据倾斜

Hive UDF 实验1的更多相关文章

  1. Hive UDF初探

    1. 引言 在前一篇中,解决了Hive表中复杂数据结构平铺化以导入Kylin的问题,但是平铺之后计算广告日志的曝光PV是翻倍的,因为一个用户对应于多个标签.所以,为了计算曝光PV,我们得另外创建视图. ...

  2. hive UDF添加方式

    hive UDF添加的方式 1.添加临时函数,只能在此会话中生效,退出hive自动失效 hive> add jar /home/jtdata/hiveUDF/out0.jar; Added [/ ...

  3. DeveloperGuide Hive UDF

    Creating Custom UDFs First, you need to create a new class that extends UDF, with one or more method ...

  4. [转]HIVE UDF/UDAF/UDTF的Map Reduce代码框架模板

    FROM : http://hugh-wangp.iteye.com/blog/1472371 自己写代码时候的利用到的模板   UDF步骤: 1.必须继承org.apache.hadoop.hive ...

  5. 2、Hive UDF编程实例

    Hive的UDF包括3种:UDF(User-Defined Function).UDAF(User-Defined Aggregate Function)和UDTF(User-Defined Tabl ...

  6. Hive UDF 用户自定义函数 编程及使用

    首先创建工程编写UDF 代码,示例如下: 1. 新建Maven项目 udf 本机Hadoop版本为2.7.7, Hive版本为1.2.2,所以选择对应版本的jar ,其它版本也不影响编译. 2. po ...

  7. Hive UDF开发-简介

    Hive进行UDF开发十分简单,此处所说UDF为Temporary的function,所以需要hive版本在0.4.0以上才可以. Hive的UDF开发只需要重构UDF类的evaluate函数即可.例 ...

  8. 【转】HIVE UDF UDAF UDTF 区别 使用

    原博文出自于:http://blog.csdn.net/longzilong216/article/details/23921235(暂时) 感谢! 自己写代码时候的利用到的模板   UDF步骤: 1 ...

  9. HIVE udf实例

    本例中udf来自<hive编程指南>其中13章自定义函数中一个例子. 按照步骤,第一步,建立一个项目,创建 GenericUDFNvl 类. /** * 不能接受第一个参数为null的情况 ...

随机推荐

  1. 重新想象 Windows 8 Store Apps (44) - 多线程之异步编程: 经典和最新的异步编程模型, IAsyncInfo 与 Task 相互转换

    [源码下载] 重新想象 Windows 8 Store Apps (44) - 多线程之异步编程: 经典和最新的异步编程模型, IAsyncInfo 与 Task 相互转换 作者:webabcd 介绍 ...

  2. FreeBSD 10 发布

    发行注记:http://www.freebsd.org/releases/10.0R/relnotes.html 下文翻译中... 主要有安全问题修复.新的驱动与硬件支持.新的命名/选项.主要bug修 ...

  3. java操作小技巧,遇到过的会一直更新,方便查找

    1.<c:forEach>可以循环map array List 2.操纵数组,不知道类型的情况下,不需要判断数组类型,直接用反射,arrays.Class.isArrays() 获取数组长 ...

  4. 利用javascript、php和ajax实现计算器

    计算器和ajax部分: <?php /** * Created by PhpStorm. * User: Administrator * Date: 16-9-2 * Time: 上午9:20 ...

  5. .NET WinForm画树叶小程序

    看了一片文章(http://keleyi.com/a/bjac/nurox416.htm),是使用分型画树叶,代码是Java的,因为Java很久没弄了,改用C#实现,下载地址: 画树叶小程序下载 核心 ...

  6. ASP.NET数据绑定技术

    1.DataBinder.Eval()方法 DataBinder.Eval()方法是ASP.NET框架支持的一个静态方法,用来计算Late_Bound(后期绑定)数据绑定表达式,并随时将结果转换为字符 ...

  7. 优化ABAP性能(摘录)

    1.使用where语句不推荐Select * from zflight.Check : zflight-airln = ‘LF’ and zflight-fligh = ‘BW222’.Endsele ...

  8. SAP RFC通信模式

    在网络技术中,数据通信可以大致划分为两种基本模式:同步通信和异步通信. 其本义是:异步通信时,通信双方时钟允许存在一定误差:同步通信时,双方时钟的允许误差较小.在SAP的系统间的通信过程中,也借用术语 ...

  9. Android Studio 第一次新建Android Gradle项目超级慢的解决方案

    大家有什么问题,欢迎问我! 注:Android Studio在第一次新建一个Gradle项目时需要下载Gradle,所以启动很慢(Gradle-bin大约三十几兆),所以我们应该事先帮他下载好. 首先 ...

  10. 基础学习day11--多线程一线程的创建,运行,同步和锁

    一.线程基本概述 1.1.进程和线程 进程:一个应用程序一般都是一个进程,正在进行的程序 每一个进程最少都有一个线程,都有一个执行顺序,该顺序是一个执行路径或者一个控制单元 线程:进程中一个独立的控制 ...