Bellman-Ford算法
#include<stdio.h>
#define max 0xffffff
int g[][]; //图的邻接矩阵
int dist[];
int n;//顶点个数
int m;//边个数
struct Edge
{
int u, v, w; //边:起点、终点、权值
};
Edge e[];
bool bellman_ford(int n)//bellman-ford算法
{
int i, k, t,j;
for(i=;i<n;i++)
dist[i]=g[][i];//初始化
for(i=;i<=n-;i++)
{ /*假设第k条边的起点是u,终点是v,以下循环考虑第k条边是否会使得源点v0到v的
最短距离缩短,即判断dist[edges[k].u] + edges[k].w < dist[edges[k].v] 是否成立*/
for(j=;j<n;j++)
{
printf("%d ",dist[j]);
}
printf("\n");
for(k=;k<=m;k++)
{
t=dist[e[k].u]+e[k].w;
if(dist[e[k].u]<max&&t<dist[e[k].v])
{
dist[e[k].v] = t;
}
}
}
/*以下是检查,若还有更新则说明存在无限循环的负值回路*/
for(k = ; k < m; k ++)
{
if(dist[e[k].u] != max &&dist[e[k].u] + e[k].w < dist[e[k].v])
{
return false;
}
}
return true;
} int main()
{
scanf("%d %d",&n,&m);
int i,j;
for(i=;i<n;i++)
{
for(j=;j<n;j++)
g[i][j]=max;
g[i][i]=;
}
for(i=;i<=m;i++)
{
int a,b,c;
scanf("%d %d %d",&a,&b,&c);
e[i].u=a;
e[i].v=b;
e[i].w=c;
g[a][b]=c;
}
for(i=;i<n;i++)
{
for(j=;j<n;j++)
printf("%d ",g[i][j]);
printf("\n");
}
bellman_ford(n);
for(i=;i<n;i++)
{
printf("%d\n",dist[i]);
} return ;
} /* 7 10
0 1 6
0 2 5
0 3 5
1 4 -1
2 1 -2
2 4 1
3 2 -2
3 5 -1
4 6 3
5 6 3 Press any key to continue */
……
递推公式(求顶点u到源点v的最短路径):
dist 1 [u] = Edge[v][u]
dist k [u] = min{ dist k-1 [u], min{ dist k-1 [j] + Edge[j][u] } }, j=0,1,…,n-1,j≠u
struct Edge
{
int u, v, w; //边:起点、终点、权值
};
Edge e[];
void bellman_ford(int n)//bellman-ford算法
{
int i, k, t;
for(i=;i<=n;i++)
dist[i]=g[][i];//初始化
for(i=;i<=n;i++)
{
for(k=;k<=m;k++)
{
t=dist[e[k].u]+e[k].w;
if(dist[e[k].u]<max&&t<dist[e[k].v])
{
dist[e[k].v] = t;
}
}
}
}

#include<stdio.h>
#define max 0xffffff
int g[][]; //图的邻接矩阵
int dist[];
int n;//顶点个数
int m;//边个数
struct Edge
{
int u, v, w; //边:起点、终点、权值
};
Edge e[];
bool bellman_ford(int n)//bellman-ford算法
{
int i, k, t,j;
for(i=;i<n;i++)
dist[i]=g[][i];//初始化
for(i=;i<=n-;i++)
{ /*假设第k条边的起点是u,终点是v,以下循环考虑第k条边是否会使得源点v0到v的
最短距离缩短,即判断dist[edges[k].u] + edges[k].w < dist[edges[k].v] 是否成立*/
for(j=;j<n;j++)
{
printf("%d ",dist[j]);
}
printf("\n");
for(k=;k<=m;k++)
{
t=dist[e[k].u]+e[k].w;
if(dist[e[k].u]<max&&t<dist[e[k].v])
{
dist[e[k].v] = t;
}
}
}
/*以下是检查,若还有更新则说明存在无限循环的负值回路*/
for(k = ; k < m; k ++)
{
if(dist[e[k].u] != max &&dist[e[k].u] + e[k].w < dist[e[k].v])
{
return false;
}
}
return true;
} int main()
{
scanf("%d %d",&n,&m);
int i,j;
for(i=;i<n;i++)
{
for(j=;j<n;j++)
g[i][j]=max;
g[i][i]=;
}
for(i=;i<=m;i++)
{
int a,b,c;
scanf("%d %d %d",&a,&b,&c);
e[i].u=a;
e[i].v=b;
e[i].w=c;
g[a][b]=c;
}
for(i=;i<n;i++)
{
for(j=;j<n;j++)
printf("%d ",g[i][j]);
printf("\n");
}
bellman_ford(n);
for(i=;i<n;i++)
{
printf("%d\n",dist[i]);
} return ;
} /* 7 10
0 1 6
0 2 5
0 3 5
1 4 -1
2 1 -2
2 4 1
3 2 -2
3 5 -1
4 6 3
5 6 3 Press any key to continue */
void bellman_ford(int n)//bellman-ford算法
{
int i, k, t,j;
for(i=;i<=n;i++)
dist[i]=g[][i];//初始化
for(k=;k<=n;k++)
{
for(j=;j<=n;j++)
{
for(i=;i<=n;i++)
{
if(g[i][j]<max&&dist[i]+g[i][j]<dist[j])
dist[j]=dist[i]+g[i][j];
}
}
}
}
Bellman-Ford算法的更多相关文章
- Bellman—Ford算法思想
---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G ...
- Bellman - Ford 算法解决最短路径问题
Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...
- Dijkstra算法与Bellman - Ford算法示例(源自网上大牛的博客)【图论】
题意:题目大意:有N个点,给出从a点到b点的距离,当然a和b是互相可以抵达的,问从1到n的最短距离 poj2387 Description Bessie is out in the field and ...
- poj1860 bellman—ford队列优化 Currency Exchange
Currency Exchange Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 22123 Accepted: 799 ...
- uva 558 - Wormholes(Bellman Ford判断负环)
题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能 ...
- ACM/ICPC 之 最短路径-Bellman Ford范例(POJ1556-POJ2240)
两道Bellman Ford解最短路的范例,Bellman Ford只是一种最短路的方法,两道都可以用dijkstra, SPFA做. Bellman Ford解法是将每条边遍历一次,遍历一次所有边可 ...
- 图论算法——最短路径Dijkstra,Floyd,Bellman Ford
算法名称 适用范围 算法过程 Dijkstra 无负权 从s开始,选择尚未完成的点中,distance最小的点,对其所有边进行松弛:直到所有结点都已完成 Bellman-Ford 可用有负权 依次对所 ...
- POJ 2240 Arbitrage (Bellman Ford判正环)
Arbitrage Time Limit: 1000MS Memory Limit: 65536K Total Submissions:27167 Accepted: 11440 Descri ...
- poj1860 兑换货币(bellman ford判断正环)
传送门:点击打开链接 题目大意:一个城市有n种货币,m个货币交换点,你有v的钱,每个交换点只能交换两种货币,(A换B或者B换A),每一次交换都有独特的汇率和手续费,问你存不存在一种换法使原来的钱更多. ...
- ACM/ICPC 之 Bellman Ford练习题(ZOJ1791(POJ1613))
这道题稍复杂一些,需要掌握字符串输入的处理+限制了可以行走的时间. ZOJ1791(POJ1613)-Cave Raider //限制行走时间的最短路 //POJ1613-ZOJ1791 //Time ...
随机推荐
- 国内公共DNS
DNS(Domain Name System,域名系统),因特网上作为域名和IP地址相互映射的一个分布式数据库,能够使用户更方便的访问互联网,而不用去记住能够被机器直接读取的IP数串.通过主机名,最终 ...
- 【Moqui框架】Moqui连接各种类型的数据库
Moqui连接mysql数据库 各种数据库的连接文本: -- Derby<datasource group-name="transactional" database-con ...
- 转-sql中的case when的用法
Case具有两种格式.简单Case函数和Case搜索函数. --简单Case函数 CASE sex WHEN '1' THEN '男' WHEN '2' THEN '女' ELSE '其他' END ...
- 转-JS中document对象详解
对象属性 document.title //设置文档标题等价于HTML的<title>标签 document.bgColor //设置页面背景色 document.fgColor //设置 ...
- hdu5536 字典树xor
一想到xor还要求最大类似的题,字典树效率高. 此代码c++ TLE. #include<stdio.h> #include<string.h> ; struct node { ...
- Freemarker-标签使用
FreeMarker标签使用 FreeMarker模板文件主要有4个部分组成 1.文本,直接输出的部分 2.注释,即<#--...-->格式不会输出 3.插值(Interpolatio ...
- Android系统中的广播(Broadcast)机制简要介绍和学习计划
在Android系统中,广播(Broadcast)是在组件之间传播数据(Intent)的一种机制:这些组件甚至是可以位于不同的进程中,这样它就像Binder机制一样,起到进程间通信的作用:本文通过一个 ...
- display & visibility区别
http://www.cnblogs.com/zhangran/archive/2012/08/29/2662459.html 说明:在学习css的过程中由于其中包含太多的元素.属性等等,总有许多是自 ...
- C#面向对象中类的静态成员与非静态成员的区别
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- aop注解
注解 xml的直接配置 <aop:config proxy-target-class="false"> //切入点 <aop:pointcut expressio ...