Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 1670   Accepted: 823

Description

For this problem, you will write a program that reads in a sequence of 32-bit signed integers. After each odd-indexed value is read, output the median (middle value) of the elements received so far.

Input

The first line of input contains a single integer P, (1 ≤ P ≤ 1000), which is the number of data sets that follow. The first line of each data set contains the data set number, followed by a space, followed by an odd decimal integer M, (1 ≤ M ≤ 9999), giving the total number of signed integers to be processed. The remaining line(s) in the dataset consists of the values, 10 per line, separated by a single space. The last line in the dataset may contain less than 10 values.

Output

For each data set the first line of output contains the data set number, a single space and the number of medians output (which should be one-half the number of input values plus one). The output medians will be on the following lines, 10 per line separated by a single space. The last line may have less than 10 elements, but at least 1 element. There should be no blank lines in the output.

Sample Input

3
1 9
1 2 3 4 5 6 7 8 9
2 9
9 8 7 6 5 4 3 2 1
3 23
23 41 13 22 -3 24 -31 -11 -8 -7
3 5 103 211 -311 -45 -67 -73 -81 -99
-33 24 56

Sample Output

1 5
1 2 3 4 5
2 5
9 8 7 6 5
3 12
23 23 22 22 13 3 5 5 3 -3
-7 -3

Source

对于每个奇数次读入,输出当前已有序列的中位数

维护两个堆,一个大根堆,一个小根堆。大根堆里存较小的数,小根堆里存较大的数。维护好以后,小根堆顶就是中位数。

每次新加入一个数,若该数比中位数大,存入小根堆,否则存入大根堆。

限制小根堆里的数最多比大根堆大1,若不满足,就把小根堆的堆顶弹到大根堆。

以下是代码,基本是抄的233。

结构体里写的是小根堆,为了缩减代码长度,把大根堆取负,也按照小根堆的算法算,就能维护出大根堆。

注意输出格式。mod20==19是为了输出10个中位数就换一行。

 /*by SilverN*/
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
const int mxn=;
struct pile{
int h[];
int cnt;
void insert(int x){//插入
h[++cnt]=x;
int k=cnt;
while(k> && h[k]<h[k>>]){//维护
swap(h[k],h[k>>]);
k>>=;
}
}
void pop(){
int k=;
h[]=h[cnt];//把末尾元素顶上来
h[cnt--]=;
while(k<=cnt){
if(h[k]>h[k+] && k<cnt)k++;//在两个子节点中找较小的
if(h[k]<h[k>>])swap(h[k],h[k>>]),k<<=;//把较小的顶上去
else break;//满足性质,退出
}
}
}big,small,empty;
void ins(int x){
if(x<=-big.h[])
big.insert(-x);
else small.insert(x);
while(small.cnt>big.cnt) big.insert(-small.h[]),small.pop();
while(big.cnt>small.cnt+) small.insert(-big.h[]),big.pop();
}
int n,m;
int main(){
int T;
scanf("%d",&T);
int i,j;
while(T--){
big=small=empty;//初始化
scanf("%d%d",&n,&m);
int num;
printf("%d %d\n",n,(m+)>>);
for(i=;i<=m;i++){
scanf("%d",&num);
ins(num);
if(i&){//奇数
printf("%d",-big.h[]);
if(i==m)printf("\n");else printf(" ");
if(i%==)printf("\n");
}
}
}
return ;
}

POJ3784 Running Median的更多相关文章

  1. poj3784 Running Median[对顶堆]

    由于我不会讲对顶堆,所以这里直接传上一个巨佬的学习笔记. 对顶堆其实还是很容易理解的,想这题的时候自己猜做法也能把没学过的对顶堆给想出来.后来了解,对顶堆主要还是动态的在线维护集合$K$大值.当然也可 ...

  2. 【POJ3784】Running Median

    Running Median Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3406   Accepted: 1576 De ...

  3. hdu 3282 Running Median

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=3282 Running Median Description For this problem, you ...

  4. POJ 3784.Running Median

    2015-07-16 问题简述: 动态求取中位数的问题,输入一串数字,每输入第奇数个数时求取这些数的中位数. 原题链接:http://poj.org/problem?id=3784 解题思路: 求取中 ...

  5. HDU 3282 Running Median 动态中位数,可惜数据范围太小

    Running Median Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pi ...

  6. 【POJ 3784】 Running Median (对顶堆)

    Running Median Description For this problem, you will write a program that reads in a sequence of 32 ...

  7. POJ3784:Running Median

    浅谈堆:https://www.cnblogs.com/AKMer/p/10284629.html 题目传送门:http://poj.org/problem?id=3784 用一个"对顶堆& ...

  8. Running Median POJ - 3784 (对顶堆/优先队列 | 链表)

    For this problem, you will write a program that reads in a sequence of 32-bit signed integers. After ...

  9. POJ 3784 Running Median(动态维护中位数)

    Description For this problem, you will write a program that reads in a sequence of 32-bit signed int ...

随机推荐

  1. java 12-3 StringBuffer的添加和删除功能

    1. StringBuffer的添加功能: public StringBuffer append(String str):可以把任意类型数据添加到字符串缓冲区里面,并返回字符串缓冲区本身 public ...

  2. Beaufort密码

    博福特密码,是一种类似于维吉尼亚密码的替代密码,由弗朗西斯·蒲福(Francis Beaufort)发明.它最知名的应用是M-209密码机.博福特密码属于对等加密,即加密演算法与解密演算法相同 博福特 ...

  3. tp2.2.2新特点

    1.不需要在配置文件中配置URL_MODEL变量就可以用普通模式和路径模式及兼容模式访问URL,但重写模式不可以. 2.当访问的URL地址没有指明具体动作(控制器里的方法)的时候,如果该控制器对应的视 ...

  4. 正则基础之——环视(Lookaround)

    环视基础 环视只进行子表达式的匹配,不占有字符,匹配到的内容不保存到最终的匹配结果,是零宽度的.环视匹配的最终结果就是一个位置. 环视的作用相当于对所在位置加了一个附加条件,只有满足这个条件,环视子表 ...

  5. oracle用sqlplus创建新用户,不是plsql developer

    1.sqlplus /nolog 2.conn /as sysdba 3.alter user system identified by "123456"; 4.alter use ...

  6. 12SpringMvc_在业务控制方法中写入普通变量收集参数

    这篇文章讲的是jsp页面不是会传一些参数到Action中,那么Action怎么去接受这个数据呢? 方案: 案例结构如下:

  7. MySQL主从同步几个文件

    MySQL主从同步:   M锁表 M导出S导入 M解锁 M建同步帐号 S获取点位:产生master.info S开启同步   3306: mysql-bin.0000x mysql-bin.index ...

  8. C#属性有什么作用

    1,主要作用:将读,写权限分开.如果不使用属性,仅使用public, protected, private,这几个限制都是读,写属性一起的,可读就可写,不可读同时也不可写.不能实现只读不可写,只写不可 ...

  9. [转]C#使用Log4Net记录日志

    第一步:下载Log4Net 下载地址:http://logging.apache.org/log4net/download_log4net.cgi 把下载的  log4net-1.2.11-bin-n ...

  10. C++ 栈的基本操作

    // zhan.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <iostream> using namesp ...