首先,进行非均匀量化,H,S,V三通道分别量化为16,4,4级,返回一个向量。量化依据如下表:

function vec = getHsvHist(Image)
[M,N,O] = size(Image);
if O~= 3
error('3 components are needed for histogram');
end
[h,s,v] = rgb2hsv(Image);
H = h; S = s; V = v;
h = h*360; %将hsv空间非等间隔量化:
% h量化成16级;
% s量化成4级;
% v量化成4级;
for i = 1:M
for j = 1:N
if h(i,j)<=15||h(i,j)>345
H(i,j) = 0;
end
if h(i,j)<=25&&h(i,j)>15
H(i,j) = 1;
end
if h(i,j)<=45&&h(i,j)>25
H(i,j) = 2;
end
if h(i,j)<=55&&h(i,j)>45
H(i,j) = 3;
end
if h(i,j)<=80&&h(i,j)>55
H(i,j) = 4;
end
if h(i,j)<=108&&h(i,j)>80
H(i,j) = 5;
end
if h(i,j)<=140&&h(i,j)>108
H(i,j) = 6;
end
if h(i,j)<=165&&h(i,j)>140
H(i,j) = 7;
end
if h(i,j)<=190&&h(i,j)>165
H(i,j) = 8;
end
if h(i,j)<=220&&h(i,j)>190
H(i,j) = 9;
end
if h(i,j)<=255&&h(i,j)>220
H(i,j) = 10;
end
if h(i,j)<=275&&h(i,j)>255
H(i,j) = 11;
end
if h(i,j)<=290&&h(i,j)>275
H(i,j) = 12;
end
if h(i,j)<=316&&h(i,j)>290
H(i,j) = 13;
end
if h(i,j)<=330&&h(i,j)>316
H(i,j) = 14;
end
if h(i,j)<=345&&h(i,j)>330
H(i,j) = 15;
end
end
end
for i = 1:M
for j = 1:N
if s(i,j)<=0.15&&s(i,j)>0
S(i,j) = 0;
end
if s(i,j)<=0.4&&s(i,j)>0.15
S(i,j) = 1;
end
if s(i,j)<=0.75&&s(i,j)>0.4
S(i,j) = 2;
end
if s(i,j)<=1&&s(i,j)>0.75
S(i,j) = 3;
end
end
end
for i = 1:M
for j = 1:N
if v(i,j)<=0.15&&v(i,j)>0
V(i,j) = 0;
end
if v(i,j)<=0.4&&v(i,j)>0.15
V(i,j) = 1;
end
if v(i,j)<=0.75&&v(i,j)>0.4
V(i,j) = 2;
end
if v(i,j)<=1&&v(i,j)>0.75
V(i,j) = 3;
end
end
end %将三个颜色分量合成为一维特征向量:L = H*Qs*Qv+S*Qv+v;Qs,Qv分别是S和V的量化级数, L取值范围[0,255]
%取Qs = 4; Qv = 4
L=zeros(M,N);
for i = 1:M
for j = 1:N
L(i,j) = H(i,j)*16+S(i,j)*4+V(i,j);
end
end
%计算L的直方图
Hist=zeros(1,256);
for i = 0:255
Hist(i+1) = size(find(L==i),1);
end
vec=Hist';

接着,进行均匀量化,H,S,V三通道分别量化为16,4,4级,返回一个向量。

function  vec= hsvHist(Image)
[M,N,O] = size(Image);
if O~= 3
error('3 components are needed for histogram');
end
H_BITS = 4; S_BITS =2; V_BITS = 2;
hsv = uint8(255*rgb2hsv(Image));
%均匀量化
% bitshift(24,-3) 表示24除以2的3次方
H=bitshift(hsv(:,:,1),-(8-H_BITS));
S=bitshift(hsv(:,:,2),-(8-S_BITS));
V=bitshift(hsv(:,:,3),-(8-V_BITS)); %%
%先进行合成,然后再统计
L=zeros(M,N);
for i=1:M
for j=1:N
L(i,j)=16*H(i,j)+4*S(i,j)+V(i,j);
end
end
%计算L的直方图
Hist=zeros(1,256);
for i = 0:255
Hist(i+1) = size(find(L==i),1);
end
vec=Hist';
end

以lena图像进行比较:

clc;clear;close all;
rgb=imread('d:/pic/lena.jpg');
h1=getHsvHist(rgb);
h2=hsvHist(rgb);
figure,
subplot(211),bar(h1),title('hsv非均匀量化直方图');
subplot(212),bar(h2),title('hsv均匀量化直方图');

在matlab中对hsv进行均匀量化和非均匀量化的更多相关文章

  1. matlab中uigetfile命令的应用

    matlab中uigetfile命令的应用 uigetfile命令的应用 此函数的用法为 [FileName,PathName,FilterIndex] = uigetfile(FilterSpec, ...

  2. matlab中help所有函数功能的英文翻译

    doc funname 在帮助浏览器中打开帮助文档 help funname 在命令窗口打开帮助文档 helpbrowser 直接打开帮助浏览器 lookfor funname 搜索某个关键字相关函数 ...

  3. MATLAB中绘制质点轨迹动图并保存成GIF

    工作需要在MATLAB中绘制质点轨迹并保存成GIF以便展示. 绘制质点轨迹动图可用comet和comet3命令,使用例子如下: t = 0:.01:2*pi;x = cos(2*t).*(cos(t) ...

  4. matlab 中 eps 的分析

    eps(a)是|a|与大于|a|的最小的浮点数之间的距离,距离越小表示精度越高.默认a=1: 这里直接在matlab中输入:eps == eps(1)(true). 我们知道浮点数其实是离散的,有限的 ...

  5. matlab中patch函数的用法

    http://blog.sina.com.cn/s/blog_707b64550100z1nz.html matlab中patch函数的用法——emily (2011-11-18 17:20:33) ...

  6. paper 121 :matlab中imresize函数

    转自:http://www.cnblogs.com/rong86/p/3558344.html matlab中函数imresize简介: 函数功能:该函数用于对图像做缩放处理. 调用格式: B = i ...

  7. MATLAB中FFT的使用方法

    MATLAB中FFT的使用方法 说明:以下资源来源于<数字信号处理的MATLAB实现>万永革主编 一.调用方法X=FFT(x):X=FFT(x,N):x=IFFT(X);x=IFFT(X, ...

  8. MATLAB中fft函数的正确使用方法

    问题来源:在阅读莱昂斯的<数字信号处理>第三章离散傅里叶变换时,试图验证实数偶对称信号的傅里叶变换实部为偶对称的且虚部为零.验证失败.验证信号为矩形信号,结果显示虚部是不为零且最大幅值等于 ...

  9. Matlab中的一些小技巧

    (转于它处,仅供参考) 1.. Ctrl+C 中断正在执行的操作 如果程序不小心进入死循环,或者计算时间太长,可以在命令窗口中使用Ctrl+c来中断.MATLAB这时可能正疲于应付,响应会有些滞后. ...

随机推荐

  1. JDBC增删查改(使用配置文件)

    JDBCDemo2.java package com.zhangbz.jdbc; import java.sql.Connection; import java.sql.ResultSet; impo ...

  2. iOS开发之网络编程--使用NSURLConnection实现文件上传

    前言:使用NSURLConnection实现文件上传有点繁琐.    本文并没有介绍使用第三方框架上传文件. 正文: 这里先提供用于编码测试的接口:http://120.25.226.186:3281 ...

  3. 使用MiniProfiler调试ASP.NET MVC网站性能

    MiniProfiler 以前开发Webform的时候可以开启trace来跟踪页面事件,这对于诊断程序的性能是有很大的帮助的,起到事半功倍的作用,今天我就来谈用mvc开 发项目的调试和性能监控.EF框 ...

  4. JSON、使用JSON进行数据交换的基础和原理

    1. JSON 1.1. JSON 1.1.1. 什么是JSON JSON即Javascript对象表示法,是一种现在主流的数据交换格式.之所以应用广泛还是由其简单易读所决定的. 简单,只有六种类型的 ...

  5. mysql中count(),group by使用

    count()统计表中或数组中记录 count(*)返回检索行的数目,且不论其值中是否包含NULL count(column_name)返回的是对列中column_name不为NULL的行的统计 例如 ...

  6. Oracle PLSQL

    Oracle :show explain plan select * from table(dbms_xplan.display); EXPLAIN PLAN FOR statements In fa ...

  7. NOIP2013普及组 -SilverN

    T1  计数问题 题目描述 试计算在区间 1 到 n 的所有整数中,数字 x(0 ≤ x ≤ 9)共出现了多少次?例如,在 1 到 11 中,即在 1.2.3.4.5.6.7.8.9.10.11 中, ...

  8. 双向广搜 POJ 3126 Prime Path

      POJ 3126  Prime Path Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 16204   Accepted ...

  9. 分享一个Fluent风格的邮件发送封装类

    C#中用SmtpClient发邮件很简单,闲着无事,简单封装一下 IEmailFactory public interface IEmailFactory { IEmailFactory SetHos ...

  10. 原创翻译-测试驱动开发(TDD)

    测试驱动开发原则 翻译自<<Expert Python Programming>> 测试驱动开发是指首先编写包含所有测试软件特点的测试集,然后再去开发软件.也就是说,在编写软件 ...