将方格的摆放分成两种:

1.水平摆放:此时所占的两个格子都记为1。

2.竖直摆放:此时底下那个格子记为1,上面那个记为0。

这样的话,每行都会有一个状态表示。

定义:dp[i][s]表示考虑已经填到第i行,这一行状态为s的方法数

转移:dp[i][s] = dp[i][s]+dp[i-1][s']  (s'为上一行的状态,当第i行和第i-1行能够满足条件时,进行转移)

先预处理出所有满足条件的第一行,然后从第二行开始转移。

最后答案为dp[n][(1<<m)-1].

当n<m时交换n和m可减小1<<m,即减少状态数。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define Mod 1000000007
#define ll long long
using namespace std;
#define N 2100 ll dp[][N];
int n,m; int FirstLine(int state)
{
int i=;
while(i<m)
{
if(state & (<<i)) //第i列为1,第i+1列也存在且必须为1
{
if(i < m-)
{
if(state & (<<(i+))) //第i+1列为1
i += ;
else
return ;
}
else
return ;
}
else
i++;
}
return ;
} int Can(int ka,int kb) //ka:这一行,kb:上一行
{
int i = ;
while(i<m)
{
if(ka & (<<i)) //这一行i列为1
{
if(kb & (<<i)) //如果上一行i列为1,则为两个水平块
{
if(i < m- && (ka & (<<(i+))) && (kb & (<<(i+))))
i += ;
else
return ;
}
else //上一行为0,竖着放的
i++;
}
else //这一行i列为0,上一行i列必须填充
{
if(kb & (<<i))
i++;
else
return ;
}
}
return ;
} int main()
{
int i,j,sa;
int state1,state2;
while(scanf("%d%d",&n,&m)!=EOF)
{
if((n*m)%)
{
puts("");
continue;
}
memset(dp,,sizeof(dp));
if(n < m)
swap(n,m);
int MAX = (<<m)-;
for(sa=;sa<=MAX;sa++)
{
if(FirstLine(sa)) //此状态可以作为第一行的状态
dp[][sa] = ;
}
for(i=;i<n;i++) //行递增
{
for(state1=;state1<=MAX;state1++)
{
for(state2=;state2<=MAX;state2++)
{
if(Can(state1,state2))
dp[i][state1] += dp[i-][state2];
}
}
}
printf("%lld\n",dp[n-][MAX]);
}
return ;
}

UESTC 885 方老师买表 --状压DP的更多相关文章

  1. UESTC_方老师买表 CDOJ 885

    老师买表 Time Limit: 3000/1000MS (Java/Others)     Memory Limit: 65535/65535KB (Java/Others) Submit Stat ...

  2. 【AGC012E】 Camel and Oases ST表+状压dp

    题目大意:一排点,两点间有距离. 初始你有一个行走值$v$,如果相邻两点距离不超过$v$你可以自由在这两点行走. 当$v$大于$0$时,你可以选择某一时刻突然飞到任意点,这样做后$v$会减半(下取整) ...

  3. UESTC 884 方老师的专题讲座 --数位DP

    定义:cnt[L][K]表示长度为L,最高位为K的满足条件C的个数. 首先预处理出cnt数组,枚举当前长度最高位和小一个长度的最高位,如果相差大于2则前一个加上后一个的方法数. 然后给定n,计算[1, ...

  4. UESTC 886 方老师金币堆 --合并石子DP

    环状合并石子问题. 环状无非是第n个要和第1个相邻.可以复制该行石子到原来那行的右边即可达到目的. 定义:dp[i][j]代表从第i堆合并至第j堆所要消耗的最小体力. 转移方程:dp[i][j]=mi ...

  5. 【bzoj5161】最长上升子序列 状压dp+打表

    题目描述 现在有一个长度为n的随机排列,求它的最长上升子序列长度的期望. 为了避免精度误差,你只需要输出答案模998244353的余数. 输入 输入只包含一个正整数n.N<=28 输出 输出只包 ...

  6. 洛谷 P4484 - [BJWC2018]最长上升子序列(状压 dp+打表)

    洛谷题面传送门 首先看到 LIS 我们可以想到它的 \(\infty\) 种求法(bushi),但是对于此题而言,既然题目出这样一个数据范围,硬要暴搜过去也不太现实,因此我们需想到用某种奇奇怪怪的方式 ...

  7. 状态压缩动态规划 状压DP

    总述 状态压缩动态规划,就是我们俗称的状压DP,是利用计算机二进制的性质来描述状态的一种DP方式 很多棋盘问题都运用到了状压,同时,状压也很经常和BFS及DP连用,例题里会给出介绍 有了状态,DP就比 ...

  8. 算法复习——状压dp

    状压dp的核心在于,当我们不能通过表现单一的对象的状态来达到dp的最优子结构和无后效性原则时,我们可能保存多个元素的有关信息··这时候利用2进制的01来表示每个元素相关状态并将其压缩成2进制数就可以达 ...

  9. NOJ 1116 哈罗哈的大披萨 【淡蓝】 [状压dp+各种优化]

    我只能说,珍爱生命,远离卡常数的题...感谢陈老师和蔡神,没有他们,,,我调一个星期都弄不出来,,,, 哈罗哈的大披萨 [淡蓝] 时间限制(普通/Java) : 1000 MS/ 3000 MS   ...

随机推荐

  1. 批处理清除VisualStudio解决方案文件夹

         有很多次我们需要手工来删除bin, obj这样的文件夹.这些文件夹是由Visual Studio编译项目时生成的,其中包括了当前项目的程序集.一个解决方案会包含好多个项目了,那么就有很多这样 ...

  2. RHEL7文件归档与压缩

    本文介绍RHEL7.2文件的归档和压缩 文件归档 归档的好处:方便使用.查询.阅读,易于管理 (批量删除文件) 常用操作 命令:tar 作用:将许多文件一起保存至一个单独的磁带或磁盘归档,并能从归档中 ...

  3. Virtual DOM 算法

    前端 virtual-dom react.js javascript 目录: 1 前言 2 对前端应用状态管理思考 3 Virtual DOM 算法 4 算法实现 4.1 步骤一:用JS对象模拟DOM ...

  4. ASP.NET MVC 微信公共平台开发之验证消息的真实性

    ASP.NET MVC 微信公共平台开发 验证消息的真实性 在MVC Controller所在项目中添加过滤器,在过滤器中重写 public override void OnActionExecuti ...

  5. JavaScript this特性,静态方法 和实例方法,prototype

    <script type="text/javascript"> function logs(str) { document.write(str + "< ...

  6. Atitit.木马 病毒 免杀 技术 360免杀 杀毒软件免杀 原理与原则 attilax 总结

    Atitit.木马 病毒 免杀 技术 360免杀 杀毒软件免杀 原理与原则 attilax 总结 1. ,免杀技术的用途2 1.1. 病毒木马的编写2 1.2. 软件保护所用的加密产品(比如壳)中,有 ...

  7. onWindowFocusChanged

    这个onWindowFocusChanged指的是这个Activity得到或者失去焦点的时候 就会call. 也就是说 如果你想要做一个Activity一加载完毕,就触发什么的话 完全可以用这个!!! ...

  8. iOS开发笔记15:地图坐标转换那些事、block引用循环/weak–strong dance、UICollectionviewLayout及瀑布流、图层混合

    1.地图坐标转换那些事 (1)投影坐标系与地理坐标系 地理坐标系使用三维球面来定义地球上的位置,单位即经纬度.但经纬度无法精确测量距离戒面积,也难以在平面地图戒计算机屏幕上显示数据.通过投影的方式可以 ...

  9. SQL Server智能感知如何更新

    经常用sql server发现一个问题,比如说我刚刚添加个表或者字段,这时候在sqlserver里面写sql语句时,没有智能提示,这个问题我以前一直不是太注意.今天好好找了下解决方法,这里做下分享. ...

  10. PHPExcel中open_basedir restriction in effect的解决方法

    用PHPExcel做导出execl的时候发现在本地没有问题,但是把网站传到租用的服务器的时候就报错,具体如下: Warning: realpath() [function.realpath]: ope ...