python 之 theano学习:
(1)theano主要支持符号矩阵表达式
(2)theano与numpy中都有broadcasting:numpy中是动态的,而theano需要在这之前就知道是哪维需要被广播。针对不同类型的数据给出如下的一张表,基本类型包括scalar、vector、row、col、matrix、tensor3、tensor4,然后有整形int对应的8、16、32、64位分别为b、w、i、l;float类型对应的32、64位为f、d;complex类型对应的64、128位为c、z。
| Constructor | dtype | ndim | shape | broadcastable |
|---|---|---|---|---|
| bscalar | int8 | 0 | () | () |
| bvector | int8 | 1 | (?,) | (False,) |
| brow | int8 | 2 | (1,?) | (True, False) |
| bcol | int8 | 2 | (?,1) | (False, True) |
| bmatrix | int8 | 2 | (?,?) | (False, False) |
| btensor3 | int8 | 3 | (?,?,?) | (False, False, False) |
| btensor4 | int8 | 4 | (?,?,?,?) | (False, False, False, False) |
| wscalar | int16 | 0 | () | () |
| wvector | int16 | 1 | (?,) | (False,) |
| wrow | int16 | 2 | (1,?) | (True, False) |
| wcol | int16 | 2 | (?,1) | (False, True) |
| wmatrix | int16 | 2 | (?,?) | (False, False) |
| wtensor3 | int16 | 3 | (?,?,?) | (False, False, False) |
| wtensor4 | int16 | 4 | (?,?,?,?) | (False, False, False, False) |
| iscalar | int32 | 0 | () | () |
| ivector | int32 | 1 | (?,) | (False,) |
| irow | int32 | 2 | (1,?) | (True, False) |
| icol | int32 | 2 | (?,1) | (False, True) |
| imatrix | int32 | 2 | (?,?) | (False, False) |
| itensor3 | int32 | 3 | (?,?,?) | (False, False, False) |
| itensor4 | int32 | 4 | (?,?,?,?) | (False, False, False, False) |
| lscalar | int64 | 0 | () | () |
| lvector | int64 | 1 | (?,) | (False,) |
| lrow | int64 | 2 | (1,?) | (True, False) |
| lcol | int64 | 2 | (?,1) | (False, True) |
| lmatrix | int64 | 2 | (?,?) | (False, False) |
| ltensor3 | int64 | 3 | (?,?,?) | (False, False, False) |
| ltensor4 | int64 | 4 | (?,?,?,?) | (False, False, False, False) |
| dscalar | float64 | 0 | () | () |
| dvector | float64 | 1 | (?,) | (False,) |
| drow | float64 | 2 | (1,?) | (True, False) |
| dcol | float64 | 2 | (?,1) | (False, True) |
| dmatrix | float64 | 2 | (?,?) | (False, False) |
| dtensor3 | float64 | 3 | (?,?,?) | (False, False, False) |
| dtensor4 | float64 | 4 | (?,?,?,?) | (False, False, False, False) |
| fscalar | float32 | 0 | () | () |
| fvector | float32 | 1 | (?,) | (False,) |
| frow | float32 | 2 | (1,?) | (True, False) |
| fcol | float32 | 2 | (?,1) | (False, True) |
| fmatrix | float32 | 2 | (?,?) | (False, False) |
| ftensor3 | float32 | 3 | (?,?,?) | (False, False, False) |
| ftensor4 | float32 | 4 | (?,?,?,?) | (False, False, False, False) |
| cscalar | complex64 | 0 | () | () |
| cvector | complex64 | 1 | (?,) | (False,) |
| crow | complex64 | 2 | (1,?) | (True, False) |
| ccol | complex64 | 2 | (?,1) | (False, True) |
| cmatrix | complex64 | 2 | (?,?) | (False, False) |
| ctensor3 | complex64 | 3 | (?,?,?) | (False, False, False) |
| ctensor4 | complex64 | 4 | (?,?,?,?) | (False, False, False, False) |
| zscalar | complex128 | 0 | () | () |
| zvector | complex128 | 1 | (?,) | (False,) |
| zrow | complex128 | 2 | (1,?) | (True, False) |
| zcol | complex128 | 2 | (?,1) | (False, True) |
| zmatrix | complex128 | 2 | (?,?) | (False, False) |
| ztensor3 | complex128 | 3 | (?,?,?) | (False, False, False) |
| ztensor4 | complex128 | 4 | (?,?,?,?) | (False, False, False, False) |
3、python中不同目录之间.py文件的引用:(1)在当前目录,直接通过import文件名去后缀即可;(2)包中包含__init__.py文件以及其他的一些.py文件,通过
from package_name import module_name或者
from package_name import *即可引用;(3)通过将py所对应的目录添加到该py对应的引用文件搜索路径即可;
上面的(2)中要区别对待从module中引用属性与方法--------------什么时候你应该使用 from module import?
- 如果你要经常访问模块的属性和方法,且不想一遍又一遍地敲入模块名,使用 from module import。
- 如果你想要有选择地导入某些属性和方法,而不想要其它的,使用 from module import。
- 如果模块包含的属性和方法与你的某个模块同名,你必须使用 import module 来避免名字冲突。
python 之 theano学习:的更多相关文章
- IMPLEMENTING A GRU/LSTM RNN WITH PYTHON AND THEANO - 学习笔记
catalogue . 引言 . LSTM NETWORKS . LSTM 的变体 . GRUs (Gated Recurrent Units) . IMPLEMENTATION GRUs 0. 引言 ...
- 从Theano到Lasagne:基于Python的深度学习的框架和库
从Theano到Lasagne:基于Python的深度学习的框架和库 摘要:最近,深度神经网络以“Deep Dreams”形式在网站中如雨后春笋般出现,或是像谷歌研究原创论文中描述的那样:Incept ...
- Theano 学习笔记(一)
Theano 学习笔记(一) theano 为什么要定义共享变量? 定义共享变量的原因在于GPU的使用,如果不定义共享的话,那么当GPU调用这些变量时,遇到一次就要调用一次,这样就会花费大量时间在数据 ...
- Recurrent Neural Network系列4--利用Python,Theano实现GRU或LSTM
yi作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORK ...
- Python 装饰器学习
Python装饰器学习(九步入门) 这是在Python学习小组上介绍的内容,现学现卖.多练习是好的学习方式. 第一步:最简单的函数,准备附加额外功能 1 2 3 4 5 6 7 8 # -*- c ...
- Requests:Python HTTP Module学习笔记(一)(转)
Requests:Python HTTP Module学习笔记(一) 在学习用python写爬虫的时候用到了Requests这个Http网络库,这个库简单好用并且功能强大,完全可以代替python的标 ...
- Comprehensive learning path – Data Science in Python深入学习路径-使用python数据中学习
http://blog.csdn.net/pipisorry/article/details/44245575 关于怎么学习python,并将python用于数据科学.数据分析.机器学习中的一篇非常好 ...
- (转载)Python装饰器学习
转载出处:http://www.cnblogs.com/rhcad/archive/2011/12/21/2295507.html 这是在Python学习小组上介绍的内容,现学现卖.多练习是好的学习方 ...
- python网络爬虫学习笔记
python网络爬虫学习笔记 By 钟桓 9月 4 2014 更新日期:9月 4 2014 文章文件夹 1. 介绍: 2. 从简单语句中開始: 3. 传送数据给server 4. HTTP头-描写叙述 ...
随机推荐
- 在后台 .cs 中执行前台的js 函数
<script type="text/javascript" language="javascript"> <!-- function ope ...
- oracle工作经验(左右连接、decode)
oracle左右连接:select a.studentno, a.studentname, b.classname from students a, classes b where a.classid ...
- lisp 题目
1.根据二叉树的中序,前序生成生成二叉树的后续 2.BFPRT算法
- 通过AngularJS实现图片上传及缩略图展示
从项目中截出的代码 HTML部分: <section> <img src="image/user-tuijian/tuijian_banner.png" /> ...
- 使用Supervisor管理Celery进程。
讲过一篇celery的,但是celery启动后并不是daemon的,在生产环境中这肯定是不可以的,那怎么办呢? 这就需要使用supervisor进行进程管理了,下面详细介绍. 一. superviso ...
- 正则验证:Pattern,Matcher
public static void main(String[] args) { String regex="([a-z]{1})(\\d{2})"; String candida ...
- Failed to load the JNI shared library jvm.dll
jdk和使用的ide版本不符合,换一个版本的jdk或者换版本的ide
- Java web--反射(解刨)
本质:先加载类 再解刨类的方法,字段,构造函数 目的:解刨出构造函数 为了new对象 解刨出字段 为了封装数据进去 解刨方法 ...
- 数据库dump导入
数据库dump导入 一.导入命令介绍: Oracle dump数据导入导出有两种方式:imp/exp.impdp/expdp.两者区别: 1.exp/imp客户端程序,受网络,磁盘的影响:impdp/ ...
- ActiveMQ安装与使用
一 .安装运行ActiveMQ: 1.下载activemq wget http://archive.apache.org/dist/activemq/apache-activemq/5.9.0/apa ...