Minimum Spanning Tree
前言
说到最小生成树(Minimum Spanning Tree),首先要对以下的图论概念有所了解。
图
图(Graph)是表示物件与物件之间的关系的数学对象,是图论的基本研究对象。图的定义方式有两种,其一是二元组定义。图G是一个有序二元组(V,E),其中V称为顶集(Vertices Set),E称为边集(Edges set),E与V不相交。它们亦可写成V(G)和E(G)。
边的方向
边是有方向的,单方向(如只允许从点a到达点b)的边称为单向边或有向边;允许双方互达的边称为双向边或无向边。包含单向边的图称为单向图,不包含单向边的称为无向图。
带权图
图上的边或者点都可以带有权值,带权值的图就称为带权图。
子图
任取图G的若干点,以及这些点在G中存在的若干边构成的集合称为G的子图。
连通图
如果无向图G的任意点都可以直接或间接地到达其余所有点,那么G就称为连通图。
树
树是一种特殊的图,树上的所有点与其他点之间有且仅有一条直接或间接路径。性质:|V|=|E|+1。
生成树
如果连通图G的一个子图是一棵包含G的所有顶点的树,则该子图称为G的生成树。显然对于同一个图,生成树并不唯一。
最小生成树
定义
图G的最小生成树(假设存在)是边权和最小的生成树。
算法
Prim和Kruskal
Prim
Prim又称加点法。
步骤
•在G中任意选取一个结点v_1,置V={v_1},E=∅,k=1
•在V-V中选取与某个v_i ∈V邻接的结点v_j ,使得边(v_i , v_j)权值最小,置V=V∪{v_j },E=E∪{(v_i ,v_j )},k=k+1
•重复第二步,直到k=|V|
复杂度
$$
O(\mid V\mid^2)
$$
模板
// cost 0~n-1
// 不连通 return -1
const int INF = 0x3f3f3f3f;
const int MAXN = 110;
bool vis[MAXN];
int lowc[MAXN];
int Prim(int cost[][MAXN], int n) {
int ans = 0;
memset(vis, false, sizeof(vis));
vis[0] = true;
for (int i = 1; i < n; i++)
lowc[i] = cost[0][1];
for (int i = 1; i < n; i++) {
int minc = INF;
int p = -1;
for (int j = 0; j < n; j++) {
if (!vis[j] && minc > lowc[j]) {
minc = lowc[j];
p = j;
}
}
if (minc == INF) {
return -1;
}
ans += minc;
vis[p] = true;
for (int j = 0; j < n; j++) {
if (!vis[j] && lowc[j] > cost [p][j]) {
lowc[j] = cost[p][j];
}
}
}
return ans;
}
Kruskal
Kruskal又称加边法。
步骤
•在G中选取最小权边e_1,置i=1
•当i=n-1时,结束,否则进行下一步
•设已选取的边为e_1 ,e_2,……, e_i ,在G中选取不同于以上的边e_i+1,使得{e_1 ,e_2,……, e_i , e_i+1}中无回路且e_i+1是满足此条件的最小权边。
•置i=i+1,转第二步
复杂度
$$
O(\mid E\mid \log \mid E \mid)
$$
模板
const int MAXM = 10000; // 边
const int MAXN = 110; // 点
int F[MAXN]; // 并查集
struct Edge {
int u, v, w; // 起点、终点、权值
}edge[MAXN];
int tol; // 边数,加边算法,初始为零
void AddEdge(int u, int v, int w) {
edge[tol].u = u;
edge[tol].v = v;
edge[tol++].w = w;
}
bool CMP(Edge a, Edge b) {
return a.w < b.w;
}
int Find(int x) {
return x == F[x] ? x : F[x] = Find(x);
}
// n 为图的点总数
int Kruskal(int n) {
memset(F, -1, sizeof(F));
sort(edge, edge + tol, CMP);
int cnt = 0, ans = 0;
for (int i = 0; i < tol; i++) {
int u = edge[i].u;
int v = edge[i].v;
int w = edge[i].w;
int t1 = Find(u);
int t2 = Find(v);
if (t1 != t2) {
ans += w;
F[t1] = t2;
cnt++;
}
if (cnt == n - 1) {
break;
}
}
return cnt < n - 1 ? -1 : ans;
}
Minimum Spanning Tree的更多相关文章
- 【HDU 4408】Minimum Spanning Tree(最小生成树计数)
Problem Description XXX is very interested in algorithm. After learning the Prim algorithm and Krusk ...
- 数据结构与算法分析–Minimum Spanning Tree(最小生成树)
给定一个无向图,如果他的某个子图中,任意两个顶点都能互相连通并且是一棵树,那么这棵树就叫做生成树(spanning tree). 如果边上有权值,那么使得边权和最小的生成树叫做最小生成树(MST,Mi ...
- Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA/(树链剖分+数据结构) + MST
E. Minimum spanning tree for each edge Connected undirected weighted graph without self-loops and ...
- CF# Educational Codeforces Round 3 E. Minimum spanning tree for each edge
E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...
- Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA链上最大值
E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...
- MST(Kruskal’s Minimum Spanning Tree Algorithm)
You may refer to the main idea of MST in graph theory. http://en.wikipedia.org/wiki/Minimum_spanning ...
- HDU 4408 Minimum Spanning Tree 最小生成树计数
Minimum Spanning Tree Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Ot ...
- [Educational Round 3][Codeforces 609E. Minimum spanning tree for each edge]
这题本来是想放在educational round 3的题解里的,但觉得很有意思就单独拿出来写了 题目链接:609E - Minimum spanning tree for each edge 题目大 ...
- Educational Codeforces Round 3 E. Minimum spanning tree for each edge 最小生成树+树链剖分+线段树
E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...
- 说说最小生成树(Minimum Spanning Tree)
minimum spanning tree(MST) 最小生成树是连通无向带权图的一个子图,要求 能够连接图中的所有顶点.无环.路径的权重和为所有路径中最小的. graph-cut 对图的一个切割或者 ...
随机推荐
- DataTable转换为Entity(反射&&泛型)
public static IEnumerable<T> Parse<T>(IEnumerable<DataRow> rows) where T : class, ...
- apache卸载
windows下apache如何完整卸载? 原创 2014年08月14日 21:30:38 13960 1.运行services.msc,在服务中停止 apache 服务. 2.运行命令行程序,输入 ...
- Win8Metro(C#)数字图像处理--2.3图像反色
原文:Win8Metro(C#)数字图像处理--2.3图像反色 [函数名称] 图像反色函数ContraryProcess(WriteableBitmap src) [算法说明] 反色公式如下: ...
- 微信小程序把玩(十六)form组件
原文:微信小程序把玩(十六)form组件 form表单组件 是提交form内的所有选中属性的值,注意每个form表单内的组件都必须有name属性指定否则提交不上去,button中的type两个subm ...
- C#通过HttpListener实现HTTP监听
代码: using NLog; using System; using System.Diagnostics; using System.IO; using System.Net; using Sys ...
- C# 中使用OPenCV(Emgu)心得
原文:C# 中使用OPenCV(Emgu)心得 首先介绍一下自己的情况,2010年的3月份开始接触学习C#编程,之前C#和OpenCV都是零基础,由于全都是自学进度比较慢,中间也走了不少弯路.进过三个 ...
- ASP.NET MVC控制器Controller
控制器的定义 MVC模式下的控制器(Controller)主要负责响应用户的输入,并且在响应时可能的修改模型(Model). 之前的URL访问,通常是通过指定服务器的路径来实现,如访问URL:http ...
- 重写QLineEdit,实现编辑框内添加删除按钮的功能(随时把控件Move到一个地方,然后show就可以了,这是万能的办法)
http://www.qtcn.org/bbs/read-htm-tid-62265-ds-1-page-1.html#180286
- UILabel实现自适应宽高需要注意的地方(二)
需求图如下所示 UILabel "上期" 距离屏幕最左边 有35px UILabel "下期" 距离屏幕最右边 有35px 进行中文字在UIlabe ...
- Linux正则和grep命令
设置命令的默认参数和别名 每次都要输入 ls -l ,烦不烦,我想用 ll 来表示 ls -l, 可以,只要在 ~/.bashrc 中加上 alias ll='ls -l' ,然后运行 source ...