Matrix Factorization SVD 矩阵分解
Today we have learned the Matrix Factorization, and I want to record my study notes. Some kownledge which I have learned before is forgot...(呜呜)
1.Terminology
单位矩阵:identity matrix
特征值:eigenvalues
特征向量:eigenvectors
矩阵的秩:rank
对角矩阵:diagonal matrix
对角化矩阵:Diagonalizing a Matrix
矩阵分解:matrix factorization
奇异值分解:SVD(singular value decomposition)
2.Basic kowledge
<1>Eigenvalues and Eigenvectors
What: The basic equation is
, the x is the eigenvector of A and the lamda is the eigenvalue of A.
How: We can transpose this equation as
(I is identity matrix), so we will kown the
. We can calculate the eigenvalues and then get the eigenvectors.
<2>Diagonalizing a Matrix
What: (大家都知道,但是特别注意下形如下面的两种矩阵也是对角矩阵)

How:
,lamada is the eigenvalue of A, and the column of S is the eigenvector of A. Like follow:


<3>rank
- The Rank and the Row Reduced Form (注:我们知道矩阵秩的定义或者求法有很多种,这里说的是行/列最简形矩阵的行/列数即为矩阵的秩,或者就是矩阵的最大非零r阶子式,则r称为矩阵的秩,即R(A)=r )
- If the rank of matrix A(n*n) is r, what it's mean. 矩阵A的列向量或者行向量只有r个是非线性相关的,其他的n-r个向量是无价值的。(这个很重要,下面矩阵分解将会用到,自己的感悟不会用英文表达了,用中文。。。)
<4>singular value
3. Matrix Factorization
What:

(注:这里注意,当k>=m或k>=n且矩阵U或者V是满秩的,矩阵无法分解)
Why: We can use this to
- Image Recovery
(recovery this image)
- Recommendation
(evaluate the ?)
- and so on
How:
<1>Matrix completation

(注:在这里我们需要做出假设,即矩阵是低秩。为什么呢?在上面基础概念中我们说到了矩阵秩所代表的意义,那么这里我们假设矩阵是低秩的,则说明矩阵的列向量只有少数几列是真正重要的,其他的都是和这几列线性相关的,那么我们就可以通过这种线性相关来补全残缺的矩阵)


<2>SVD is one of the methods of matrix factorization, we will introduce this method below.
We have discussed the Diagonalizing a Matrix,but when A is any m by n matrix, square or rectangular. Its rank is r. We will diagonalize this A, but not by
. The eigenvectors in S have three big problems: They are usually not orthogonal, there are not always enough eigenvectors, and
requires A to be square. The singular vectors of A solve all those problems in a perfect way.
singular value:(这里有一篇博文说的很好,推荐下)

通过上面的方法,能够对矩阵X做出一定的降秩,但是如果这里d与m或者n较为接近,那么降秩的效果就不明显,所以我们使用一种近似的策略,如下:

这样我们就是实现了将一个矩阵A,经过SVD近似,转换成一个同维度的矩阵A*,但是它的秩远远低于A

to be continued...
Matrix Factorization SVD 矩阵分解的更多相关文章
- Numpy实现SVD矩阵分解
1. 引入包 2. 实现矩阵分解 3. 从分量还原矩阵
- 机器学习 | SVD矩阵分解算法,对矩阵做拆分,然后呢?
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题第28篇文章,我们来聊聊SVD算法. SVD的英文全称是Singular Value Decomposition,翻译过来 ...
- 【RS】Sparse Probabilistic Matrix Factorization by Laplace Distribution for Collaborative Filtering - 基于拉普拉斯分布的稀疏概率矩阵分解协同过滤
[论文标题]Sparse Probabilistic Matrix Factorization by Laplace Distribution for Collaborative Filtering ...
- 【RS】List-wise learning to rank with matrix factorization for collaborative filtering - 结合列表启发排序和矩阵分解的协同过滤
[论文标题]List-wise learning to rank with matrix factorization for collaborative filtering (RecSys '10 ...
- 【RS】Matrix Factorization Techniques for Recommender Systems - 推荐系统的矩阵分解技术
[论文标题]Matrix Factorization Techniques for Recommender Systems(2009,Published by the IEEE Computer So ...
- [线性代数] 矩阵代数進階:矩阵分解 Matrix factorization
Matrix factorization 导语:承载上集的矩阵代数入门,今天来聊聊进阶版,矩阵分解.其他集数可在[线性代数]标籤文章找到.有空再弄目录什麽的. Matrix factorization ...
- 机器学习笔记7:矩阵分解Recommender.Matrix.Factorization
目录 1矩阵分解概述 1.1用在什么地方 1.2推荐的原理 2矩阵分解的原理 2.1目标函数 2.2 损失函数 2.3 通过梯度下降的方法求得结果 3 代码实现 参考地址: 贪心学院:https:// ...
- 吴恩达机器学习笔记59-向量化:低秩矩阵分解与均值归一化(Vectorization: Low Rank Matrix Factorization & Mean Normalization)
一.向量化:低秩矩阵分解 之前我们介绍了协同过滤算法,本节介绍该算法的向量化实现,以及说说有关该算法可以做的其他事情. 举例:1.当给出一件产品时,你能否找到与之相关的其它产品.2.一位用户最近看上一 ...
- 矩阵分解(Matrix Factorization)与推荐系统
转自:http://www.tuicool.com/articles/RV3m6n 对于矩阵分解的梯度下降推导参考如下:
随机推荐
- python 函数之day3
一 函数的语法及特性 什么是函数? 定义:函数是一个功能通过一组语句的集合,由名字(函数名)将其封装起来的代码块,要想执行这个函数,只要调用其函数名即可. 特性: 减少重复代码 使程序变的可扩展 使程 ...
- Html5+NodeJS——拖拽多个文件上传到服务器
实现多文件拖拽上传的简易Node项目,可以在github上下载,你可以先下载下来:https://github.com/Johnharvy/upLoadFiles/. 解开下载下的zip格式包,建议用 ...
- How Long Does It Take
好长时间没写博客了,真心惭愧啊! 废话少说,原题链接:https://pta.patest.cn/pta/test/1342/exam/4/question/24939 题目如下: Given the ...
- SQL语句经典大全
一.基础 1.说明:创建数据库 CREATE DATABASE database-name 2.说明:删除数据库 drop database dbname 3.说明:备份sql server --- ...
- 正确获取访问者ip
使用$_SERVER['REMOTE_ADDR']获取访问者ip具有局限性.比如访问者系统位于docker环境时,$_SERVER['REMOTE_ADDR']获取到的ip为虚拟ip,而不是我们真正需 ...
- jQuery弹出提示信息简洁版(自动消失)
之前看了有一些现成的blockUI.Boxy.tipswindow等的jQuery弹出层插件,可是我的要求并不高,只需要在保存后弹出提示信息即可,至于复杂点的弹出层-可以编辑的,我是直接用bootst ...
- TCP和UDP的区别
(1)TCP是面向连接的传输控制协议,而UDP提供了无连接的数据报服务:(2)TCP具有高可靠性,确保传输数据的正确性,不出现丢失或乱序:UDP在传输数据前不建立连接,不对数据报进行检查与修改,无须等 ...
- 省市县三级联动(jqurey+json)
1.效果图 2.联动js /** * jquery.choosearea.js - 地区联动封装 */ ; (function ($) { var choosearea = function (opt ...
- SDOI 2016 生成魔咒
题目大意:一个字符串,刚开始为空,依次在后面添加一个字符,问每次添加完字符后本质不同的字符串有多少种 后缀自动机裸题,添加字符时,更新的结点个数即为新增加的子串 #include<bits/st ...
- WPF计算
设计思路: 用WPF窗体设计,在第一个数和第二个数的文本框中输入数值,单击录题按钮,数值保存在n1,n2文档中,把要做的题都保存完后,单击开始按钮,开始做题,每做完一道题,按Enter键,进入下一题, ...