Today we have learned the Matrix Factorization, and I want to record my study notes. Some kownledge which I have learned before is forgot...(呜呜)

1.Terminology

单位矩阵:identity matrix

特征值:eigenvalues

特征向量:eigenvectors

矩阵的秩:rank

对角矩阵:diagonal matrix

对角化矩阵:Diagonalizing a Matrix

矩阵分解:matrix factorization

奇异值分解:SVD(singular value decomposition)

2.Basic kowledge

<1>Eigenvalues and Eigenvectors

What: The basic equation is , the x is the eigenvector of A and the lamda is the eigenvalue of A.

How: We can transpose this equation as (I is identity matrix), so we will kown the .  We can calculate the eigenvalues and then get the eigenvectors.

<2>Diagonalizing a Matrix

What: (大家都知道,但是特别注意下形如下面的两种矩阵也是对角矩阵)

How: ,lamada is the eigenvalue of A, and the column of S is the eigenvector of A. Like follow:

<3>rank

  • The Rank and the Row Reduced Form (注:我们知道矩阵秩的定义或者求法有很多种,这里说的是行/列最简形矩阵的行/列数即为矩阵的秩,或者就是矩阵的最大非零r阶子式,则r称为矩阵的秩,即R(A)=r )
  • If the rank of matrix A(n*n) is r, what it's mean. 矩阵A的列向量或者行向量只有r个是非线性相关的,其他的n-r个向量是无价值的。(这个很重要,下面矩阵分解将会用到,自己的感悟不会用英文表达了,用中文。。。)

<4>singular value

3. Matrix Factorization

What:

(注:这里注意,当k>=m或k>=n且矩阵U或者V是满秩的,矩阵无法分解)

Why: We can use this to

  • Image Recovery

(recovery this image)

  • Recommendation

(evaluate the ?)

  • and so on

How: 

<1>Matrix completation

(注:在这里我们需要做出假设,即矩阵是低秩。为什么呢?在上面基础概念中我们说到了矩阵秩所代表的意义,那么这里我们假设矩阵是低秩的,则说明矩阵的列向量只有少数几列是真正重要的,其他的都是和这几列线性相关的,那么我们就可以通过这种线性相关来补全残缺的矩阵)

<2>SVD is one of the methods of matrix factorization, we will introduce this method below.

We have discussed the Diagonalizing a Matrix,but when A is any m by n matrix, square or rectangular. Its rank is r. We will diagonalize this A, but not by . The eigenvectors in S have three big problems: They are usually not orthogonal, there are not always enough eigenvectors, and  requires A to be square. The singular vectors of A solve all those problems in a perfect way.

singular value:(这里有一篇博文说的很好,推荐下

通过上面的方法,能够对矩阵X做出一定的降秩,但是如果这里d与m或者n较为接近,那么降秩的效果就不明显,所以我们使用一种近似的策略,如下:

这样我们就是实现了将一个矩阵A,经过SVD近似,转换成一个同维度的矩阵A*,但是它的秩远远低于A

to be continued...

Matrix Factorization SVD 矩阵分解的更多相关文章

  1. Numpy实现SVD矩阵分解

    1. 引入包 2. 实现矩阵分解 3. 从分量还原矩阵

  2. 机器学习 | SVD矩阵分解算法,对矩阵做拆分,然后呢?

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题第28篇文章,我们来聊聊SVD算法. SVD的英文全称是Singular Value Decomposition,翻译过来 ...

  3. 【RS】Sparse Probabilistic Matrix Factorization by Laplace Distribution for Collaborative Filtering - 基于拉普拉斯分布的稀疏概率矩阵分解协同过滤

    [论文标题]Sparse Probabilistic Matrix Factorization by Laplace Distribution for Collaborative Filtering  ...

  4. 【RS】List-wise learning to rank with matrix factorization for collaborative filtering - 结合列表启发排序和矩阵分解的协同过滤

    [论文标题]List-wise learning to rank with matrix factorization for collaborative filtering   (RecSys '10 ...

  5. 【RS】Matrix Factorization Techniques for Recommender Systems - 推荐系统的矩阵分解技术

    [论文标题]Matrix Factorization Techniques for Recommender Systems(2009,Published by the IEEE Computer So ...

  6. [线性代数] 矩阵代数進階:矩阵分解 Matrix factorization

    Matrix factorization 导语:承载上集的矩阵代数入门,今天来聊聊进阶版,矩阵分解.其他集数可在[线性代数]标籤文章找到.有空再弄目录什麽的. Matrix factorization ...

  7. 机器学习笔记7:矩阵分解Recommender.Matrix.Factorization

    目录 1矩阵分解概述 1.1用在什么地方 1.2推荐的原理 2矩阵分解的原理 2.1目标函数 2.2 损失函数 2.3 通过梯度下降的方法求得结果 3 代码实现 参考地址: 贪心学院:https:// ...

  8. 吴恩达机器学习笔记59-向量化:低秩矩阵分解与均值归一化(Vectorization: Low Rank Matrix Factorization & Mean Normalization)

    一.向量化:低秩矩阵分解 之前我们介绍了协同过滤算法,本节介绍该算法的向量化实现,以及说说有关该算法可以做的其他事情. 举例:1.当给出一件产品时,你能否找到与之相关的其它产品.2.一位用户最近看上一 ...

  9. 矩阵分解(Matrix Factorization)与推荐系统

    转自:http://www.tuicool.com/articles/RV3m6n 对于矩阵分解的梯度下降推导参考如下:

随机推荐

  1. Smart3D系列教程5之 《案例实战演练2——大区域的地形三维重建》

    一.前言 Wish3D出品的Smart3D系列教程中,前面一讲说明了小物件的照片三维重建,相信大家对建模的流程有了一定的了解.这次讲解中,我们将演示说明以一组无人机倾斜摄影照片为原始数据,通过Smar ...

  2. Javascript初学篇章_6(BOM)

    BOM 浏览器对象模型 BOM (浏览器对象模型),它提供了与浏览器窗口进行交互的对象 一.window对象 Window对 象表示整个浏览器窗口. 1.系统消息框 alert() alert('he ...

  3. 一鼓作气 博客--第三篇 note3

    1 推荐读书消费者行为学 -商业的本质,APP得到,5分钟商学院 2定义字典 dic={'name':haibao,'age':18} 3字典的基本操作--查询 dic={'name':'haibao ...

  4. wpf 逻辑树与可视化树

    XAML天生就是用来呈现用户界面的,这是由于它具有层次化的特性.在WPF中,用户界面由一个对象树构建而成,这棵树叫作逻辑树.逻辑树的概念很直观,但是为什么要关注它呢?因为几乎WPF的每一方面(属性.事 ...

  5. Disruptor-NET和内存栅栏

    Disruptor-NET算法(是一种无锁算法)需要我们自己实现某一种特定的内存操作的语义以保证算法的正确性.这时我们就需要显式的使用一些指令来控制内存操作指令的顺序以及其可见性定义.这种指令称为内存 ...

  6. Python黑帽编程3.0 第三章 网络接口层攻击基础知识

    3.0 第三章 网络接口层攻击基础知识 首先还是要提醒各位同学,在学习本章之前,请认真的学习TCP/IP体系结构的相关知识,本系列教程在这方面只会浅尝辄止. 本节简单概述下OSI七层模型和TCP/IP ...

  7. SpringMVC拦截器详解[附带源码分析]

    目录 前言 重要接口及类介绍 源码分析 拦截器的配置 编写自定义的拦截器 总结 总结 前言 SpringMVC是目前主流的Web MVC框架之一. 如果有同学对它不熟悉,那么请参考它的入门blog:h ...

  8. 剑指Offer面试题:22.二叉搜索树的后序遍历序列

    一.题目:二叉搜索树的后序遍历序列 题目:输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果.如果是则返回true,否则返回false.假设输入的数组的任意两个数字都互不相同. 例如在下面 ...

  9. 如何设计一门语言(十)——正则表达式与领域特定语言(DSL)

    几个月前就一直有博友关心DSL的问题,于是我想一想,我在gac.codeplex.com里面也创建了一些DSL,于是今天就来说一说这个事情. 创建DSL恐怕是很多人第一次设计一门语言的经历,很少有人一 ...

  10. Worktile 技术架构概要

    其实早就该写这篇博客了,一直说忙于工作没有时间,其实时间挤挤总会有的,可能就是因为懒吧!从2013年11月一直拖到现在,今天就简单谈谈 Worktile 的技术架构吧 . Worktile 自上线到现 ...