题意略。

思路:首先想到暴力去扫,这样的复杂度是n * min(ai),对于gcd = p,对答案的贡献应该是 (a1 / p) * (a2 / p) * .... * (an / p),得出这个贡献未必要暴力地去扫,

我们可以分桶后,再求后缀和,再作差来得到个数后,进行快速幂。比如说:我们想知道gcd = p时对答案的贡献,那么add = (c1 ^ d1) * (c2 ^ d2) *.....,其中

c1是ai / p之后得出的数,d1表示(a1 / p) * (a2 / p) * .... * (an / p)中,有多少ai / p == c1,这样我们求出所有的ci所用时间是 log(n) ,对于每一个ci,要求出

ci ^ di所用时间也是log的。把每一个 <= min(ai)统计一次,所用时间是n * logn * logn。

注意,我们在枚举p的时候,只枚举由互不相同的因子组成的p,当p内含有相同因子时,它是前种情况的子集,这里肯定有重复,可以利用莫比乌斯反演来

去重。

详见代码:

#include<bits/stdc++.h>
#define maxn 100005
//#define LOCAL
using namespace std;
typedef long long LL;
const LL mod = 1e9 + ; bool check[maxn];
int prime[maxn],mu[maxn];
LL sum[maxn]; void mobius(){
memset(check,false,sizeof(check));
mu[] = ;
int tot = ;
for(int i = ;i < maxn;++i){
if(!check[i]){
prime[tot++] = i;
mu[i] = -;
}
for(int j = ;j < tot;++j){
if(i * prime[j] > maxn) break;
check[i * prime[j]] = true;
if(i % prime[j] == ){
mu[i * prime[j]] = ;
break;
}
else mu[i * prime[j]] = -mu[i];
}
}
}
LL quick_pow(LL a,LL n){
LL ret = ;
while(n > ){
if(n & ){
ret *= a;
ret %= mod;
}
n = n / ;
a = a * a % mod;
}
return ret;
} int main(){
#ifdef LOCAL
freopen("kkk.txt","r",stdin);
freopen("kkkout.txt","w",stdout);
#endif
int T,cas = ;
mobius();
scanf("%d",&T);
while(T--){
int minn = maxn,maxx = -maxn;
int n,temp;
scanf("%d",&n);
memset(sum,,sizeof(sum));
for(int i = ;i < n;++i){
scanf("%d",&temp);
++sum[temp];
minn = min(minn,temp);
maxx = max(maxx,temp);
}
for(int i = maxn - ;i >= ;--i)
sum[i] += sum[i + ];
LL ans = ;
for(int i = ;i <= minn;++i){
if(mu[i] == ) continue;
LL temp = -mu[i];
for(int j = i;j <= maxx;j += i){
temp = (temp * quick_pow(j / i,sum[j] - sum[min(maxx + ,j + i)]) % mod);
}
ans += temp;
ans = (ans % mod + mod) % mod;
}
printf("Case #%d: %lld\n",cas++,ans);
}
return ;
} /*
1
4
4 6 9 7
*/

HDU 6053(莫比乌斯反演)的更多相关文章

  1. HDU 4746 (莫比乌斯反演) Mophues

    这道题看巨巨的题解看了好久,好久.. 本文转自hdu4746(莫比乌斯反演) 题意:给出n, m, p,求有多少对a, b满足gcd(a, b)的素因子个数<=p,(其中1<=a<= ...

  2. HDU 1695 (莫比乌斯反演) GCD

    题意: 从区间[1, b]和[1, d]中分别选一个x, y,使得gcd(x, y) = k, 求满足条件的xy的对数(不区分xy的顺序) 分析: 虽然之前写过一个莫比乌斯反演的总结,可遇到这道题还是 ...

  3. GCD HDU - 1695 莫比乌斯反演入门

    题目链接:https://cn.vjudge.net/problem/HDU-1695#author=541607120101 感觉讲的很好的一个博客:https://www.cnblogs.com/ ...

  4. HDU 5212 莫比乌斯反演

    Code Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submis ...

  5. hdu 1695(莫比乌斯反演)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  6. hdu 4746Mophues[莫比乌斯反演]

    Mophues Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 327670/327670 K (Java/Others) Total ...

  7. 算术 HDU - 6715 (莫比乌斯反演)

    大意: 给定$n,m$, 求$\sum\limits_{i=1}^n\sum\limits_{j=1}^m\mu(lcm(i,j))$ 首先有$\mu(lcm(i,j))=\mu(i)\mu(j)\m ...

  8. HDU 4746 莫比乌斯反演+离线查询+树状数组

    题目大意: 一个数字组成一堆素因子的乘积,如果一个数字的素因子个数(同样的素因子也要多次计数)小于等于P,那么就称这个数是P的幸运数 多次询问1<=x<=n,1<=y<=m,P ...

  9. HDU 5382 莫比乌斯反演

    题目大意: 求S(n)的值 n<=1000000 这是官方题解给出的推导过程,orz,按这上面说的来写,就不难了 这里需要思考的就是G(n)这个如何利用积性函数的性质线性筛出来 作为一个质数,那 ...

随机推荐

  1. Visual Studio 调试(系列文章)

    调试是软件开发过程中非常重要的一个部分,它具挑战性,但是也有一定的方法和技巧. Visual Studio 调试程序有助于你观察程序的运行时行为并发现问题. 该调试器可用于所有 Visual Stud ...

  2. MacBook Air多出一块磁盘?

    今天将MAC的系统升级到Mojave,启动之后发现系统挂载的磁盘变了,我记得升级之前文件系统是挂载在/dev/disk0上的,但是升级之后,文件系统挂载在/dev/disk1上了. 用diskutil ...

  3. 【Intellij】Hot Swap Failed & class reloaded

    用 Intellij IDEA 编译程序时遇到了这个问题,如下图所示: 对结果貌似没什么影响,但暂时没找到出现这个情况的原因……

  4. 洛谷P2125 题解

    吐槽: 只能说这道题很数学,本数学蒟蒻推了半天没推出来,只知道要用绝对值,幸亏教练提醒,才勉强想出正解(似乎不是这样的),真的是很无语. 以上皆为吐槽本题,可直接 跳过 分析: 既然题目是要使书架上的 ...

  5. 【React踩坑记二】react项目实现JS路由跳转

    这里使用的是4.31版本的react-router-dom "react-router-dom": "^4.3.1", 直接使用以下代码即可实现路由跳转 thi ...

  6. 关于AJAX的跨域问题

    最近过年的这几天在做毕业设计的时候遇到了一个关于AJAX的跨域问题,本来我是想要用一下聚合数据平台提供的天气预报的接口的,然后做一个当地的天气情况展示,但是在使用AJAX的时候,被告知出现错误了. 这 ...

  7. 【Java例题】3.5 级数之和

    5. 计算级数之和: y=3*1!/1-3^2*2!/2^2+3^3*3!/3^3-...+ (-1)^(n-1)*3^n*n!/n^n. 这里的"^"表示乘方,"!&q ...

  8. 【Java例题】1.4圆类

    4.定义一个圆类,包括半径.构造方法.计算周长方法, 计算面积方法和显示半径方法. 然后编写一个主类,在其主方法中通过定义一个圆对象来 显示圆的半径.周长和面积. package study; imp ...

  9. Spring系列(二):Spring IoC应用

    一.Spring IoC的核心概念 IoC(Inversion of Control  控制反转),详细的概念见Spring系列(一):Spring核心概念 二.Spring IoC的应用 1.定义B ...

  10. 递归&分治&贪心

    递归 Recursion:通过函数体来进行的循环. 思路简单但效率低(建立函数的副本,消耗大量时间和内存).能用迭代就不用递归.递推公式+递推终止条件. 计算n阶乘,递归实现 def Factoria ...