HDU 6053(莫比乌斯反演)
题意略。
思路:首先想到暴力去扫,这样的复杂度是n * min(ai),对于gcd = p,对答案的贡献应该是 (a1 / p) * (a2 / p) * .... * (an / p),得出这个贡献未必要暴力地去扫,
我们可以分桶后,再求后缀和,再作差来得到个数后,进行快速幂。比如说:我们想知道gcd = p时对答案的贡献,那么add = (c1 ^ d1) * (c2 ^ d2) *.....,其中
c1是ai / p之后得出的数,d1表示(a1 / p) * (a2 / p) * .... * (an / p)中,有多少ai / p == c1,这样我们求出所有的ci所用时间是 log(n) ,对于每一个ci,要求出
ci ^ di所用时间也是log的。把每一个 <= min(ai)统计一次,所用时间是n * logn * logn。
注意,我们在枚举p的时候,只枚举由互不相同的因子组成的p,当p内含有相同因子时,它是前种情况的子集,这里肯定有重复,可以利用莫比乌斯反演来
去重。
详见代码:
#include<bits/stdc++.h>
#define maxn 100005
//#define LOCAL
using namespace std;
typedef long long LL;
const LL mod = 1e9 + ; bool check[maxn];
int prime[maxn],mu[maxn];
LL sum[maxn]; void mobius(){
memset(check,false,sizeof(check));
mu[] = ;
int tot = ;
for(int i = ;i < maxn;++i){
if(!check[i]){
prime[tot++] = i;
mu[i] = -;
}
for(int j = ;j < tot;++j){
if(i * prime[j] > maxn) break;
check[i * prime[j]] = true;
if(i % prime[j] == ){
mu[i * prime[j]] = ;
break;
}
else mu[i * prime[j]] = -mu[i];
}
}
}
LL quick_pow(LL a,LL n){
LL ret = ;
while(n > ){
if(n & ){
ret *= a;
ret %= mod;
}
n = n / ;
a = a * a % mod;
}
return ret;
} int main(){
#ifdef LOCAL
freopen("kkk.txt","r",stdin);
freopen("kkkout.txt","w",stdout);
#endif
int T,cas = ;
mobius();
scanf("%d",&T);
while(T--){
int minn = maxn,maxx = -maxn;
int n,temp;
scanf("%d",&n);
memset(sum,,sizeof(sum));
for(int i = ;i < n;++i){
scanf("%d",&temp);
++sum[temp];
minn = min(minn,temp);
maxx = max(maxx,temp);
}
for(int i = maxn - ;i >= ;--i)
sum[i] += sum[i + ];
LL ans = ;
for(int i = ;i <= minn;++i){
if(mu[i] == ) continue;
LL temp = -mu[i];
for(int j = i;j <= maxx;j += i){
temp = (temp * quick_pow(j / i,sum[j] - sum[min(maxx + ,j + i)]) % mod);
}
ans += temp;
ans = (ans % mod + mod) % mod;
}
printf("Case #%d: %lld\n",cas++,ans);
}
return ;
} /*
1
4
4 6 9 7
*/
HDU 6053(莫比乌斯反演)的更多相关文章
- HDU 4746 (莫比乌斯反演) Mophues
这道题看巨巨的题解看了好久,好久.. 本文转自hdu4746(莫比乌斯反演) 题意:给出n, m, p,求有多少对a, b满足gcd(a, b)的素因子个数<=p,(其中1<=a<= ...
- HDU 1695 (莫比乌斯反演) GCD
题意: 从区间[1, b]和[1, d]中分别选一个x, y,使得gcd(x, y) = k, 求满足条件的xy的对数(不区分xy的顺序) 分析: 虽然之前写过一个莫比乌斯反演的总结,可遇到这道题还是 ...
- GCD HDU - 1695 莫比乌斯反演入门
题目链接:https://cn.vjudge.net/problem/HDU-1695#author=541607120101 感觉讲的很好的一个博客:https://www.cnblogs.com/ ...
- HDU 5212 莫比乌斯反演
Code Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submis ...
- hdu 1695(莫比乌斯反演)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- hdu 4746Mophues[莫比乌斯反演]
Mophues Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 327670/327670 K (Java/Others) Total ...
- 算术 HDU - 6715 (莫比乌斯反演)
大意: 给定$n,m$, 求$\sum\limits_{i=1}^n\sum\limits_{j=1}^m\mu(lcm(i,j))$ 首先有$\mu(lcm(i,j))=\mu(i)\mu(j)\m ...
- HDU 4746 莫比乌斯反演+离线查询+树状数组
题目大意: 一个数字组成一堆素因子的乘积,如果一个数字的素因子个数(同样的素因子也要多次计数)小于等于P,那么就称这个数是P的幸运数 多次询问1<=x<=n,1<=y<=m,P ...
- HDU 5382 莫比乌斯反演
题目大意: 求S(n)的值 n<=1000000 这是官方题解给出的推导过程,orz,按这上面说的来写,就不难了 这里需要思考的就是G(n)这个如何利用积性函数的性质线性筛出来 作为一个质数,那 ...
随机推荐
- Java用户程序
Java的用户程序分为两类:Java Application和Java Applet. 这两类程序在程序结构和执行机制上有一定的差异. Java Application是完整的程序,需要独立的Java ...
- junit的Test不能使用,报错信息:Test is not an annotation type
在使用junit的Test做测试时,注解@Test报错”Test is not an annotation type”,发现是因为测试类的类名命名为了Test,所以导致错误. 测试类类名不能直接命名为 ...
- linux初学者-输出输入管理
1.输出重定向 在linux中,因为用户的权限不同,所以访问某些文件或者目录会被拒绝而形成错误输出,这些错误的输出也会显示出来.一般正确输出的编号为1,错误输出的编号为2.如下图,在普通用户stu ...
- springmvc+mybatis+spring+redis
只作参考,以防忘记使用! mybatis的配置文件: <?xml version="1.0" encoding="UTF-8" ?> <!DO ...
- 彻底搞懂Python切片操作
在利用Python解决各种实际问题的过程中,经常会遇到从某个对象中抽取部分值的情况,切片操作正是专门用于完成这一操作的有力武器.理论上而言,只要条件表达式得当,可以通过单次或多次切片操作实现任 ...
- 使用钉钉对接禅道的bug系统,实现禅道提的bug实时在钉钉提醒并艾特对应的开发人员处理
现在公司测试中有一个痛点是每次测试人员提完bug后,需要定期去提醒开发人员查看禅道的bug记录及修复bug. 导致测试人员在项目测试中不仅要测试整个软件,还要负起实时监督提醒功能的“保姆角色”,身心疲 ...
- python 感悟
* 优美胜于丑陋.* 显式胜于隐式.* 简单胜于复杂.* 复杂胜于难懂.* 扁平胜于嵌套.* 稀疏胜于紧密.* 可读性应当被重视.* 尽管实用性会打败纯粹性,特例也不能凌驾于规则之上.* 不要忽略任何 ...
- str_replace导致的注入问题汇总
研究了下replace的注入安全问题. 一般sql注入的过滤方式就是引用addslashes函数进行过滤. 他会把注入的单引号转换成\',把双引号转换成\",反斜杠会转换成\\等 写一段ph ...
- 封装 Gson 解析Json到对象是否失败
在使用Google的 Gson 类库解析 Json 数据时,难免会出现解析失败的情况. 在这种情况下,使用 if(obj == null) 是不可行的,fromJson 方法会自动生成对象的实例,所以 ...
- Mysql超详解
Mysql超详解 一.命令框基本操作及连接Mysql 找到Mysql安装路径,查看版本 同时按快捷键win+R会弹出一个框,在框中输入cmd 点击确定后会出现一个黑框,这是命令框,我们的操作要在这命令 ...