Paper | A novel deep learning-based method of improving coding efficiency from the decoder-end for HEVC
发表在2017年DCC。
这篇文章立意很简单,方法也很简单,但是做得早、效果好、引用量也不错(40+)。
指标:在HEVC的intra、LDP、LDB和RA模式下,BDBR平均可以下降5%、6.4%、5.3%和5.5%。
由于是解码端(decoder-end)的网络,因此可以进一步解决inloop-filter没能解决的块效应和振铃效应等压缩伪影。
以下摘一些精彩的叙述,同时重点看清楚实施细节。
精彩叙述
提升压缩质量是视频编码的永恒主题。然而,无论我们如何修改编码器,视频冗余已经很难下降。
在解码端增强视频质量,等价于提升了压缩效率。
这种方法受益于端到端训练,并且可以拓展至视频压缩标准。
由于实际的有损压缩标准都不是理论最优的,因此就存在信息冗余可以被继续挖掘和利用。
JPEG、H264、HEVC等方法之所以没能突破压缩率极限,就是因为它们没有利用外部信息或先验。
我们无需修改编码器。
作者将那些传统的优化方法称为compressive-sensing-based methods。它们通常不考虑外部先验,但仍然能取得一定效果,说明冗余仍然是存在的。
细节
DCAD:Deep CNN-based Auto Decoder。
训练目标:MSE损失。
网络结构:10层\(64 \times 3 \times 3\)滤波器堆叠,ReLU激活函数(除了最后一层),全局残差网络,各层补零。
作者试过20层,效果并没有更好。
在选择训练块时,作者是根据TU分割信息选择的。作者尽量使得每一种TU分割的数量相同,即均匀出现在训练集中。
对于高QP模型,作者将低QP模型迁移过来,以更好地学习。
图像为YCbCr三通道,只在亮度通道上增强。
HM 16.0压缩,考虑了QP = 22,27,32,37。
AdaDelta优化方法比学习率衰减方法更好。关于四个QP的初始学习率分别设为1,0.1,0.1和0.01。
最后一层的学习率是全局的1/10。
Paper | A novel deep learning-based method of improving coding efficiency from the decoder-end for HEVC的更多相关文章
- 【RS】Deep Learning based Recommender System: A Survey and New Perspectives - 基于深度学习的推荐系统:调查与新视角
[论文标题]Deep Learning based Recommender System: A Survey and New Perspectives ( ACM Computing Surveys ...
- Predicting effects of noncoding variants with deep learning–based sequence model | 基于深度学习的序列模型预测非编码区变异的影响
Predicting effects of noncoding variants with deep learning–based sequence model PDF Interpreting no ...
- 论文翻译:2021_Towards model compression for deep learning based speech enhancement
论文地址:面向基于深度学习的语音增强模型压缩 论文代码:没开源,鼓励大家去向作者要呀,作者是中国人,在语音增强领域 深耕多年 引用格式:Tan K, Wang D L. Towards model c ...
- 论文笔记: Deep Learning based Recommender System: A Survey and New Perspectives
(聊两句,突然记起来以前一个学长说的看论文要能够把论文的亮点挖掘出来,合理的进行概括23333) 传统的推荐系统方法获取的user-item关系并不能获取其中非线性以及非平凡的信息,获取非线性以及非平 ...
- Paper Reading——LEMNA:Explaining Deep Learning based Security Applications
Motivation: The lack of transparency of the deep learning models creates key barriers to establishi ...
- Paper List ABOUT Deep Learning
Deep Learning 方向的部分 Paper ,自用.一 RNN 1 Recurrent neural network based language model RNN用在语言模型上的开山之作 ...
- 个性探测综述阅读笔记——Recent trends in deep learning based personality detection
目录 abstract 1. introduction 1.1 个性衡量方法 1.2 应用前景 1.3 伦理道德 2. Related works 3. Baseline methods 3.1 文本 ...
- paper 147:Deep Learning -- Face Data Augmentation(一)
1. 在深度学习中,当数据量不够大时候,常常采用下面4中方法: (1)人工增加训练集的大小. 通过平移, 翻转, 加噪声等方法从已有数据中创造出一批"新"的数据.也就是Data ...
- Deep Learning 12_深度学习UFLDL教程:Sparse Coding_exercise(斯坦福大学深度学习教程)
前言 理论知识:UFLDL教程.Deep learning:二十六(Sparse coding简单理解).Deep learning:二十七(Sparse coding中关于矩阵的范数求导).Deep ...
随机推荐
- Codeforces Round #597 (Div. 2) E. Hyakugoku and Ladders 概率dp
E. Hyakugoku and Ladders Hyakugoku has just retired from being the resident deity of the South Black ...
- java(二)变量
基础数据类型: 数值型:整型(byte.short.int.long).浮点型(float.double)java各整数类型有固定的表数范围和字段长度,不受具体os的影响,以保持java的可移植性:j ...
- C#中char[]与string之间的转换;byte[]与string之间的转化
目录 1.char[]与string之间的转换 2.byte[]与string之间的转化 1.char[]与string之间的转换 //string 转换成 Char[] string str=&qu ...
- dell服务器已有阵列新增的磁盘无法识别显示外来
问题描述: 今天遇到个插入新硬盘显示外来盘,然后不可用,然后电话问了一下戴尔的工程师 说需要清除一下原来磁盘的阵列信息之类的,才能识别到,这里就做一个笔记记录一下,顺便分享给有需要的朋友! 解决方法: ...
- IT兄弟连 HTML5教程 了解HTML5的主流应用1
在很多人眼里,HTML5与互联网营销密切相关,但其实从开发者的角度而言,它是一种网页标准,定义了浏览器语言的编写规范.伴随HTML5标准尘埃落定,浏览器对HTML5特性的逐步支持,再加上国内对HTML ...
- MySQL基础之STRAIGHT JOIN用法简介
MySQL基础之STRAIGHT JOIN用法简介 引用mysql官方手册的说法: STRAIGHT_JOIN is similar to JOIN, except that the left tab ...
- pixijs shader 实现图片波浪效果
const app = new PIXI.Application({ transparent: true }); document.body.appendChild(app.view); // Cre ...
- elasticsearch 索引的使用(配合haystack)
1,# 从仓库拉取镜像$ sudo docker image pull delron/elasticsearch-ik:2.4.6-1.02,下载elasticsearc-2.4.6目录拷贝到home ...
- ACR122U读卡器在win7以上系统使用过程中的设置项
发现ACR122U这个读卡器在进行nested破解的时候总是卡死,换了N个驱动程序都不行. 后发现是windows系统因智能卡的即插即用设置导致的问题,可以通过组策略的设置搞定. gpedit.msc ...
- 用户和登录的ID、Name和SID
SQL Server的安全主体主要分为Login.User和Role,不仅有ID属性,还有Name属性和SID属性,SID是指Security ID.在查看用户和登录的时候,受到模拟上下文的影响.当执 ...