CCF-CSP题解 201512-4 送货
求字典序最小欧拉路。
似乎不能用\(Fluery\)算法(\(O(E^2)\))。\(Fluery\)算法的思路是:延申的边尽可能不是除去已走过边的图的桥(割)。每走一步都要判断是否是割,应当会超时。
采用\(Hierholzer\)算法(\(O(V+E)\)),亦称逐步插入回路法。思路见代码。注意根据题意,每次选取未走过顶点最小的边延申。
注意题目要求从1号节点出发。
欧拉路存在的条件:
无向图:
存在欧拉回路的条件:原图连通,每个节点均为偶度节点。
存在欧拉通路的条件:存在欧拉回路,或原图连通,有两个节点为奇度节点,其他节点均为偶度节点。
有向图:
存在欧拉回路的条件:基图(有向边变成无向边)连通,每个节点的入度等于出度。
存在欧拉通路的条件:存在欧拉回路,或基图连通,有一个节点入度等于出度+1,有一个节点出度等于入度+1,其他节点入度等于出度。
#include<bits/stdc++.h>
const int maxn = 10000;
const int maxm = 100000;
using namespace std;
int to[maxm * 2 + 10];
int vis[maxm * 2 + 10];
int nex[maxm * 2 + 10];
int head[maxn + 10], cnt = 0;
void addEdge(int a, int b)
{
to[cnt] = b;
vis[cnt] = 0;
nex[cnt] = head[a];
head[a] = cnt++;
to[cnt] = a;
vis[cnt] = 0;
nex[cnt] = head[b];
head[b] = cnt++;
}
int degree[maxn + 10];
int vis1[maxn + 10], num = 0;
void dfs(int x)
{
vis1[x] = 1;
num++;
for (int i = head[x]; i != -1; i = nex[i])
{
int l = to[i];
if (!vis1[l])
dfs(l);
}
}
int main()
{
int n, m;
scanf("%d%d", &n, &m);
memset(head, -1, sizeof(head));
memset(degree, 0, sizeof(degree));
for (int i = 1, a, b; i <= m; i++)
{
scanf("%d%d", &a, &b);
addEdge(a, b);
degree[a]++;
degree[b]++;
}
memset(vis1, 0, sizeof(vis1));
dfs(1);
int odd = 0;
for (int i = 1; i <= n; i++)
{
if (degree[i] % 2)
odd++;
}
if (num == n && (odd == 0 || (odd == 2 && degree[1] % 2)))
{
stack<int> s1, s2;
s1.push(1);
while (!s1.empty())
{
int x = s1.top();
int y = -1, ii = -1;
for (int i = head[x]; i != -1; i = nex[i])
{
if (vis[i])
continue;
int l = to[i];
if (y == -1 || y > l)
y = l, ii = i;
}
if (y == -1)
{
s2.push(x);
s1.pop();
}
else
{
vis[ii] = vis[ii ^ 1] = 1;
s1.push(y);
}
}
bool first = true;
while (!s2.empty())
{
if (first)
{
printf("%d", s2.top());
s2.pop();
first = false;
}
else
{
printf(" %d", s2.top());
s2.pop();
}
}
printf("\n");
}
else
{
printf("-1\n");
}
return 0;
}
CCF-CSP题解 201512-4 送货的更多相关文章
- CCF CSP 201703-3 Markdown
CCF计算机职业资格认证考试题解系列文章为meelo原创,请务必以链接形式注明本文地址 CCF CSP 201703-3 Markdown 问题描述 Markdown 是一种很流行的轻量级标记语言(l ...
- CCF CSP 201312-3 最大的矩形
CCF计算机职业资格认证考试题解系列文章为meelo原创,请务必以链接形式注明本文地址 CCF CSP 201312-3 最大的矩形 问题描述 在横轴上放了n个相邻的矩形,每个矩形的宽度是1,而第i( ...
- CCF CSP 201609-3 炉石传说
CCF计算机职业资格认证考试题解系列文章为meelo原创,请务必以链接形式注明本文地址 CCF CSP 201609-3 炉石传说 问题描述 <炉石传说:魔兽英雄传>(Hearthston ...
- CCF CSP 201403-3 命令行选项
CCF计算机职业资格认证考试题解系列文章为meelo原创,请务必以链接形式注明本文地址 CCF CSP 201403-3 命令行选项 问题描述 请你写一个命令行分析程序,用以分析给定的命令行里包含哪些 ...
- CCF CSP 201709-4 通信网络
CCF计算机职业资格认证考试题解系列文章为meelo原创,请务必以链接形式注明本文地址 CCF CSP 201709-4 通信网络 问题描述 某国的军队由N个部门组成,为了提高安全性,部门之间建立了M ...
- CCF CSP 201409-3 字符串匹配
CCF计算机职业资格认证考试题解系列文章为meelo原创,请务必以链接形式注明本文地址 CCF CSP 201409-3 字符串匹配 问题描述 给出一个字符串和多行文字,在这些文字中找到字符串出现的那 ...
- CCF CSP 201503-3 节日
CCF计算机职业资格认证考试题解系列文章为meelo原创,请务必以链接形式注明本文地址 CCF CSP 201503-3 节日 问题描述 有一类节日的日期并不是固定的,而是以“a月的第b个星期c”的形 ...
- CCF CSP 201509-2 日期计算
CCF计算机职业资格认证考试题解系列文章为meelo原创,请务必以链接形式注明本文地址 CCF CSP 201509-2 日期计算 问题描述 给定一个年份y和一个整数d,问这一年的第d天是几月几日? ...
- CCF CSP 201604-2 俄罗斯方块
CCF计算机职业资格认证考试题解系列文章为meelo原创,请务必以链接形式注明本文地址 CCF CSP 201604-2 俄罗斯方块 问题描述 俄罗斯方块是俄罗斯人阿列克谢·帕基特诺夫发明的一款休闲游 ...
- CCF CSP 201512-2 消除类游戏
CCF计算机职业资格认证考试题解系列文章为meelo原创,请务必以链接形式注明本文地址 CCF CSP 201512-2 消除类游戏 问题描述 消除类游戏是深受大众欢迎的一种游戏,游戏在一个包含有n行 ...
随机推荐
- MySQL锁会不会,你就差看一看
数据库锁知识 不少人在开发的时候,应该很少会注意到这些锁的问题,也很少会给程序加锁(除了库存这些对数量准确性要求极高的情况下),即使我们不会这些锁知识,我们的程序在一般情况下还是可以跑得好好的.因为这 ...
- dom4j的测试例子和源码详解(重点对比和DOM、SAX的区别)
目录 简介 DOM.SAX.JAXP和DOM4J xerces解释器 SAX DOM JAXP DOM解析器 获取SAX解析器 DOM4j 项目环境 工程环境 创建项目 引入依赖 使用例子--生成xm ...
- Res2net:多尺度骨干网络结构
<Res2Net: A New Multi-scale Backbone Architecture> 来自:南开大学程明明组 论文:https://arxiv.org/abs/1904.0 ...
- SpringMVC参数绑定学习总结【前后端数据参数传递】
目录 1. 绑定机制 2. 支持的数据类型 3. 参数请求中文乱码解决 4.自定义类型转换器 5.最后参数绑定学习小结 SpringMVC作为Controller层(等价servlet和struts中 ...
- P1035 级数求和
题目描述 已知:S_n= 1+1/2+1/3+…+1/nSn=1+1/2+1/3+…+1/n.显然对于任意一个整数KK,当nn足够大的时候,S_nSn大于KK. 现给出一个整数KK(1 \le k ...
- Android触摸反馈
事件分发 当点击事件发生时,事件最先传递给Activity,Activity会首先将事件将被所属的Window进行处理,即调用 superDispatchTouchEvent() 方法.通过观察sup ...
- VUE的中v-if和v-shou的区别
v-if的特点:每次都会重新删除或创建元素 v-shou的特点:每次执行都只是切换了元素的display:none的属性 v-if的缺点: 每次使用都会有较高性能消耗(频繁的切换元素建议不适用,建议使 ...
- 01-TensorFlow2.0基础
01-TensorFlow基础 Tensorflow是什么 Google的开源软件库 采取数据流图,用于数值计算 支持多种平台 - GPU.CPU. 移动设备 最初用于深度学习,变得越来越通用 Ten ...
- 一文看尽Java-并发编程知识点
一.前言 从7月份开始一直加班比较多,一直到双11结束,博客没跟上写,接下来写一点总结性的东西,比如Java并发编程总结.Mybatis源码总结.Spring源码和基础知识总结,首先来看下并发 ...
- 【nodejs原理&源码赏析(4)】深度剖析cluster模块源码与node.js多进程(上)
[摘要] 集群管理模块cluster浅析 示例代码托管在:http://www.github.com/dashnowords/blogs 一. 概述 cluster模块是node.js中用于实现和管理 ...