这场AGC我竟然会四题,吓傻了

然后仔细一看发现BCD都是700pts的……果然我还是naive

E题好像还是不会= =

\(\bf A - 01 \ Matrix\)

\(\bf Solution\):直接贴代码(因为太浅显了0_0)

#include<bits/stdc++.h>
#define ll long long
#define fr(i,x,y) for(int i=(x);i<=(y);i++)
#define rf(i,x,y) for(int i=(x);i>=(y);i--)
#define frl(i,x,y) for(int i=(x);i<(y);i++)
using namespace std;
const int N=2002;
int n,m,A,B; int main(){
cin>>n>>m>>A>>B;
fr(i,1,n){
fr(j,1,m)
printf("%d",(i<=B)^(j<=A));
puts("");
}
return 0;
}

\(\bf B- Sorting \ a \ Segment\)

\(\bf Description\):给你一个长度为 \(n\) 的排列,一次操作可以选择连续 \(k\) 个进行排序,问一次操作后有多少种可能排列。

\(\bf Solution\):首先显然一段区间递增的话排序后不变,所以先把这样的区间踢掉。然后我们考虑选择 \([i,i+k-1]\) 与 \([i+1,i+k]\) 这两个区间操作后,如果获得的排列是一样的话,那么显然 \(P_i\) 是 \([i,i+k-1]\) 的最小值,\(P_{i+k}\) 是 \([i+1,i+k]\) 的最大值,用单调队列预处理滑动窗口最值就好了……当然想写线段树或者ST表什么的也阔以0_0

#include<bits/stdc++.h>
#define ll long long
#define fr(i,x,y) for(int i=(x);i<=(y);i++)
#define rf(i,x,y) for(int i=(x);i>=(y);i--)
#define frl(i,x,y) for(int i=(x);i<(y);i++)
using namespace std;
const int N=200002;
int n,K,a[N];
int h[N],t,w;
int mn[N],mx[N]; void read(int &x){
char ch=getchar();x=0;
for(;ch<'0'||ch>'9';ch=getchar());
for(;ch>='0'&&ch<='9';ch=getchar()) x=(x<<3)+(x<<1)+ch-'0';
} void push(int x,bool (*cmp)(int,int)){
while(w>=t&&cmp(a[h[w]],a[x])) w--;
h[++w]=x;
} int find(int x){
while(h[t]<=x-K) t++;
return a[h[t]];
} bool big(int x,int y){ return x>y; }
bool small(int x,int y){ return x<y; } void init(){
t=1;w=0;
fr(i,1,n){
push(i,big);
mn[i]=find(i);
}
t=1;w=0;
fr(i,1,n){
push(i,small);
mx[i]=find(i);
}
} int main(){
read(n);read(K);
fr(i,1,n) read(a[i]);
init();
int flag=0;
fr(i,2,K) if (a[i-1]>a[i]) flag++;
int bo=0,ans=0;
fr(i,K,n){
if (flag==0) bo=1;
else{
if (i==K||a[i-K]!=mn[i-1]||a[i]!=mx[i]) ans++;
}
flag-=a[i-K+1]>a[i-K+2];
flag+=a[i]>a[i+1];
}
cout<<ans+bo<<endl;
return 0;
}

\(\bf C-LCMs\)

\(\bf Description\):求 \(\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} lcm(A_i,A_j)\)

\(\bf Solution\):看起来不太新鲜的题……

莫比乌斯反演……

题目是有序对,转成无序对会比较好求,并且要把所有数存到一个桶 \(s\) 里

设 \(g(x)=(\sum_{i=1}^{M/x} s_{xi} \cdot xi)^2\) (\(M\) 是值域)

然后给 \(g\) 反演一下变成 \(f\) ,这里用的是第二种莫比乌斯反演:若\(g(n)=\sum_{n|d}f(d)\),则\(f(n)=\sum_{n|d}\mu(d/n)g(d)\)

然后答案显然是 \(\sum_{i=1}^M \frac{f(i)}{i}\)

啊感性理解

#include<bits/stdc++.h>
#define ll long long
#define fr(i,x,y) for(int i=(x);i<=(y);i++)
#define rf(i,x,y) for(int i=(x);i>=(y);i--)
#define frl(i,x,y) for(int i=(x);i<(y);i++)
using namespace std;
const int N=200002;
const int M=1000002;
const int p=998244353;
const int inv2=(p+1)/2;
int n,a[N],s[M];
int mu[M];
ll sum[M],f[M]; void read(int &x){
char ch=getchar();x=0;
for(;ch<'0'||ch>'9';ch=getchar());
for(;ch>='0'&&ch<='9';ch=getchar()) x=(x<<3)+(x<<1)+ch-'0';
} void Add(ll &x,ll y){
x+=y;
while(x>=p) x-=p;
while(x<0) x+=p;
} int b[M],pri[M],L;
void init(){
mu[1]=1;
frl(i,2,M){
if (!b[i]) pri[++L]=i,mu[i]=-1;
for(int j=1;j<=L&&i*pri[j]<M;j++){
b[i*pri[j]]=1;
if (i%pri[j]==0) break;
else mu[i*pri[j]]=-mu[i];
}
}
} ll qpow(ll sum,ll n){
ll ans=1;
for(;n;n>>=1,sum=sum*sum%p) if (n&1) ans=ans*sum%p;
return ans;
} int main(){
read(n);
fr(i,1,n) read(a[i]),s[a[i]]++;
init();
frl(i,1,M){
for(int j=i;j<M;j+=i)
Add(sum[i],1LL*s[j]*j);
sum[i]=sum[i]*sum[i]%p;
}
frl(i,1,M){
for(int j=i;j<M;j+=i)
Add(f[i],sum[j]*mu[j/i]);
}
ll ans=0;
frl(i,1,M){
if (f[i]) Add(ans,f[i]*qpow(i,p-2)%p);
}
fr(i,1,n) Add(ans,-a[i]);
cout<<ans*inv2%p<<endl;
return 0;
}

\(\bf D-Unique \ Path\)

\(\bf Description\):有一张 \(n\) 个点 \(m\) 条边的联通图,告诉你某些点对之间只有一条简单路径,某些有两条,问这样的图是否存在。

\(\bf Solution\):首先发现一张图里,除了那些看起来在一棵树上的点之间只有一条路,其他都有多条。。这启发我们对于所有 \(C_i=0\) 的边维护一下连通性,在一个联通块里就表示在一棵看起来像树的东西上面(可能有些结点上会挂很多圈圈)。如果有 \(C_i=1\) 的边连接的两个点在同一个联通块里那显然是不行的。然后假如现在有 \(cnt\) 个联通块,我们发现最多还可以连 \(cnt(cnt-1)/2\) 条边,所以如果边数多与 \(n-cnt+cnt(cnt-1)/2\) 那肯定不行。然后还有就是如果只有一或俩联通块但是有 \(C_i=1\) 的边那也不行。如果有 \(C_i=1\) 的边那就起码有 \(n\) 条边,所以如果只有 \(n-1\) 条也不行。。

细节好多,我爆了5发才过= =都要怀疑是不是又胡假算法惹0_0

#include<bits/stdc++.h>
#define ll long long
#define fr(i,x,y) for(int i=(x);i<=(y);i++)
#define rf(i,x,y) for(int i=(x);i>=(y);i--)
#define frl(i,x,y) for(int i=(x);i<(y);i++)
using namespace std;
const int N=200002;
int n,Q;
ll m;
struct data{
int x,y,w;
bool operator < (const data &q)const{ return w<q.w; }
}a[N];
int f[N]; template<class T> void read(T &x){
char ch=getchar();x=0;
for(;ch<'0'||ch>'9';ch=getchar());
for(;ch>='0'&&ch<='9';ch=getchar()) x=(x<<3)+(x<<1)+ch-'0';
} int gf(int x){ return f[x]==x?x:f[x]=gf(f[x]); } int main(){
read(n);read(m);read(Q);
fr(i,1,Q) read(a[i].x),read(a[i].y),read(a[i].w);
fr(i,1,Q) a[i].x++,a[i].y++;
sort(a+1,a+1+Q);
fr(i,1,n) f[i]=i;
int flag=0;
fr(i,1,Q){
if (a[i].w){
flag=i;
break;
}
int x=a[i].x,y=a[i].y;
f[gf(x)]=gf(y);
}
if (flag) fr(i,flag,Q) if (gf(a[i].x)==gf(a[i].y)) return puts("No"),0;
int cnt=0;
fr(i,1,n) if (gf(i)==i) cnt++;
if (!flag){
if (m>1LL*cnt*(cnt-1)/2+n-cnt) puts("No");
else puts("Yes");
} else{
if (cnt<=2||m<n) puts("No");
else if (m>1LL*cnt*(cnt-1)/2+n-cnt) puts("No");
else puts("Yes");
}
return 0;
}

AtCoder Grand Contest 038的更多相关文章

  1. Atcoder Grand Contest 038 F - Two Permutations(集合划分模型+最小割)

    洛谷题面传送门 & Atcoder 题面传送门 好久前做的题了--今天偶然想起来要补个题解 首先考虑排列 \(A_i\) 要么等于 \(i\),要么等于 \(P_i\) 这个条件有什么用.我们 ...

  2. Atcoder Grand Contest 038 E - Gachapon(Min-Max 容斥+背包)

    Atcoder 题面传送门 & 洛谷题面传送门 我竟然能独立做出 Ag 的 AGC E,incredible!更新了 Atcoder 做题难度上限( 首先按照套路 Min-Max 容斥,\(a ...

  3. AtCoder Grand Contest 038 简要题解

    从这里开始 比赛目录 Problem A 01 Matrix Code #include <bits/stdc++.h> using namespace std; typedef bool ...

  4. AtCoder Grand Contest 038题解

    好久没更了 写点东西吧= = A 01Matrix 简单构造 左上角和右下角染成1其他染成0即可 #include<bits/stdc++.h> #define ll long long ...

  5. AtCoder Grand Contest 038 题解

    传送门 这场表现的宛如一个\(zz\) \(A\) 先直接把前\(b\)行全写成\(1\),再把前\(a\)列取反就行 const int N=1005; char mp[N][N];int n,m, ...

  6. AtCoder Grand Contest 012

    AtCoder Grand Contest 012 A - AtCoder Group Contest 翻译 有\(3n\)个人,每一个人有一个强大值(看我的假翻译),每三个人可以分成一组,一组的强大 ...

  7. AtCoder Grand Contest 011

    AtCoder Grand Contest 011 upd:这篇咕了好久,前面几题是三周以前写的... AtCoder Grand Contest 011 A - Airport Bus 翻译 有\( ...

  8. AtCoder Grand Contest 031 简要题解

    AtCoder Grand Contest 031 Atcoder A - Colorful Subsequence description 求\(s\)中本质不同子序列的个数模\(10^9+7\). ...

  9. AtCoder Grand Contest 010

    AtCoder Grand Contest 010 A - Addition 翻译 黑板上写了\(n\)个正整数,每次会擦去两个奇偶性相同的数,然后把他们的和写会到黑板上,问最终能否只剩下一个数. 题 ...

随机推荐

  1. .Net Core删除ClientApp目录,重新生成报错解决办法

    因为在老的项目上做修改,需要删除单独的spa目录,就把ClientApp删掉了.但是重新生成报错,在VS2017界面上也没找到在什么地方配置.最后发现在csproj上里面可以去掉spa的配置 < ...

  2. python-setup模块

    本地打包,setup安装 一.distutils 使用:distutils 进行打包,步骤如下,以单一文件为例. 1.创建文件 在同一目录下.写一个foo.py文件: #-*- coding:utf- ...

  3. 【NOIP2015】子串

    题目描述 有两个仅包含小写英文字母的字符串 A 和 B.现在要从字符串 A 中取出 k 个互不重叠的非空子串,然后把这 k 个子串按照其在字符串 A 中出现的顺序依次连接起来得到一 个新的字符串,请问 ...

  4. Be a Winner 当成功者

    Winners see opportunities. Losers see. Winners see possibilities. Losers see problems. Winners see t ...

  5. Java的Object类

    (1)Object是类层次结构的根类,所有的类都直接或者间接的继承自Object类. (2)Object类的构造方法有一个,并且是无参构造 这其实就是理解当时我们说过,子类构造方法默认访问父类的构造是 ...

  6. ThinkPhp3.1.3执行存储过程返回false

    1.Tp在调用存储过程的时候,每次都显示false 返回一大片,下面是我自己的代码.

  7. php反序列化漏洞复现过程

    PHP反序列化漏洞复现 测试代码 我们运行以上代码文件,来证明函数被调用: 应为没有创建对象,所以构造函数__construct()不会被调用,但是__wakeup()跟__destruct()函数都 ...

  8. go-json类

    package main import ( "encoding/json" "fmt" ) /* { "company":"itc ...

  9. go-select

    select语句属于条件分支流程控制方法,不过它只能用于通道. select语句中的case关键字只能后跟用于通道的发送操作的表达式以及接收操作的表达式或语句. ch1 := make(chan ) ...

  10. Thief-Book 上班摸鱼神器

    Thief-Book 上班摸鱼神器 介绍 Thief-Book 是一款真正的摸鱼神器,可以更加隐秘性大胆的看小说. 隐蔽性 自定义透明背景,随意调整大小,完美融入各种软件界面 快捷性 三个快捷键,实现 ...