简介

越来越多的政府机关、企事业单位将选择拥有数据分析师资质的专业人士为他们的项目做出科学、合理的分析、以便正确决策;越来越多的风险投资机构把数据分析师所出具的数据分析报告作为其判断项目是否可行及是否值得投资的重要依据;越来越多的高等院校和教育机构把数据分析师课程作为其中高管理层及决策层培训计划的重要内容;越来越多的有志之士把数据分析师培训内容作为其职业生涯发展中必备的知识体系。国内数据分析行业刚兴起,企业对此类行业的人才需求相对较大,未来前景比较广阔。

工作职责

数据分析师指的是不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。

互联网本身具有数字化和互动性的特征,这种属性特征给数据搜集、整理、研究带来了革命性的突破。以往“原子世界”中数据分析师要花较高的成本(资金、资源和时间)获取支撑研究、分析的数据,数据的丰富性、全面性、连续性和及时性都比互联网时代差很多。

与传统的数据分析师相比,互联网时代的数据分析师面临的不是数据匮乏,而是数据过剩。因此,互联网时代的数据分析师必须学会借助技术手段进行高效的数据处理。更为重要的是,互联网时代的数据分析师要不断在数据研究的方法论方面进行创新和突破。

就行业而言,数据分析师的价值与此类似。就新闻出版行业而言,无论在任何时代,媒体运营者能否准确、详细和及时地了解受众状况和变化趋势,都是媒体成败的关键。

此外,对于新闻出版等内容产业来说,更为关键的是,数据分析师可以发挥内容消费者数据分析的职能,这是支撑新闻出版机构改善客户服务的关键职能。

技能要求

1、懂业务。从事数据分析工作的前提就会需要懂业务,即熟悉行业知识、公司业务及流程,最好有自己独到的见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的使用价值。

2、懂管理。一方面是搭建数据分析框架的要求,比如确定分析思路就需要用到营销、管理等理论知识来指导,如果不熟悉管理理论,就很难搭建数据分析的框架,后续的数据分析也很难进行。另一方面的作用是针对数据分析结论提出有指导意义的分析建议。

3、懂分析。指掌握数据分析基本原理与一些有效的数据分析方法,并能灵活运用到实践工作中,以便有效的开展数据分析。基本的分析方法有:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等。高级的分析方法有:相关分析法、回归分析法、聚类分析法、判别分析法、主成分分析法、因子分析法、对应分析法、时间序列等。

4、懂工具。指掌握数据分析相关的常用工具。数据分析方法是理论,而数据分析工具就是实现数据分析方法理论的工具,面对越来越庞大的数据,我们不能依靠计算器进行分析,必须依靠强大的数据分析工具帮我们完成数据分析工作。

5、懂设计。懂设计是指运用图表有效表达数据分析师的分析观点,使分析结果一目了然。图表的设计是门大学问,如图形的选择、版式的设计、颜色的搭配等等,都需要掌握一定的设计原则。

python 数据分析师的更多相关文章

  1. 预测python数据分析师的工资

    前两篇博客分别对拉勾中关于 python 数据分析有关的信息进行获取(https://www.cnblogs.com/lyuzt/p/10636501.html)和对获取的数据进行可视化分析(http ...

  2. python数据分析师面试题选

    以下题目均非原创,只是汇总 python数据分析部分 1. 如何利用SciKit包训练一个简单的线性回归模型 利用linear_model.LinearRegression()函数 # Create ...

  3. 曾经我是一个只会excel的数据分析师,直到我遇到了……

    我是一个数据分析师. 准确来说我是一个当年只会excel数据透视表,就天不怕地不怕地来当数据分析师的人.当年的某一天,我的老板Q我: 小刘啊,我小姨子给了我一个全国市委书记的名单,你帮我看看,有什么规 ...

  4. Python拉勾爬虫——以深圳地区数据分析师为例

    拉勾因其结构化的数据比较多因此过去常常被爬,所以在其多次改版之下变得难爬.不过只要清楚它的原理,依然比较好爬.其机制主要就是AJAX异步加载JSON数据,所以至少在搜索页面里翻页url不会变化,而且数 ...

  5. python、数据分析师、算法工程师的学习计划

    1.前言 最近(2018.4.1)在百忙之中开通了博客,希望能够把自己所学所想沉淀下来,这篇是我开始系统学习python,成为数据分析师和算法工程师之路的计划,望有志于为同样目标奋斗的数据猿一起交流和 ...

  6. 数据分析师入门|Python安装MAC版

    最近在学数据分析师入门课,看了大纲,感觉终于不再慌乱踩坑了,开始存档最粗暴版学习笔记,遇到停止的地方按照下文红字直接输入就OK,方便和我一样的小伙伴参考呀,老师讲的很适合我这种初学者,PUSH了很多资 ...

  7. Python数据分析在互联网寒冬下,数据分析师还吃香吗?

    伴随着移动互联网的飞速发展,越来越多用户被互联网连接在一起,用户所积累下来的数据越来越多,市场对数据方面人才的需求也越来越大,由此也带火了如数据分析.数据挖掘.算法等职业,而作为其中入门门槛相对较低. ...

  8. 数据分析师的福音——VS 2017带来一体化的数据分析开发环境

    (此文章同时发表在本人微信公众号“dotNET开发经验谈”,欢迎右边二维码来关注.) 题记:在上个月的Connect() 2016大会上,微软宣布了VS 2017 RC的发布,其中为数据分析师带来了一 ...

  9. Python数据可视化之Matplotlib实现各种图表

    数据分析就是将数据以各种图表的形式展现给领导,供领导做决策用,因此熟练掌握饼图.柱状图.线图等图表制作是一个数据分析师必备的技能.Python有两个比较出色的图表制作框架,分别是Matplotlib和 ...

随机推荐

  1. offsetX、clientX、screenX、pageX、layerX

    pageX/Y 原点相对于文档窗口左上角. offsetX/Y 原点相对于触发事件元素的左上角,需要注意的是,offset是有负值的,如果你的元素有边框,那么offset会是负值. (黑色为鼠标点击点 ...

  2. HDU 1847

    题意略. 思路:又忘了dp,搜索这种暴力方法了.... #include<bits/stdc++.h> using namespace std; ; bool sg[maxn]; int ...

  3. Spring框架的重要问题

    这篇文章总结了一些关于Spring框架的重要问题,这些问题都是你在面试或笔试过程中可能会被问到的. 目录 Spring概述 依赖注入 Spring Beans Spring注解 Spring的对象访问 ...

  4. 如何封装springboot的starter

    --为啥要封装starter --如何封装 --测试 为啥要封装starter springboot的starter开箱即用,只需要引入依赖,就可以帮你自动装配bean,这样可以让开发者不需要过多的关 ...

  5. asio kcp源码分析

    asio kcp代码走读 (1)kcp_client_wrap类 a 提供方法接口如下: send_msg kcp_client_.send_msg(msg); stop //等待工作线程退出 set ...

  6. SyntaxError: invalid syntax : if not 0 <= time_low < 1<<32L:

    报错 Traceback (most recent call last): File "D:/PyCharm 5.0.3/WorkSpace/2.NLP/8.高阶实践/1.PipelineQ ...

  7. DB2 根据id查表

    SELECT * FROM SYSCAT.TABLES WHERE TBSPACEID = 2 AND TABLEID = 50 SELECT * FROM SYSCAT.COLUMNS WHERE  ...

  8. 牛客小白月赛6 A 鲲 数学

    链接:https://www.nowcoder.com/acm/contest/136/A来源:牛客网 北冥有鱼,其名为鲲,鲲之大,不知其几千里也. ——<庄子·逍遥游> HtBest有一 ...

  9. hdu 4722 Good Numbers 规律 数位dp

    #include<iostream> #include<cstring> #include<cstdio> #include<vector> #incl ...

  10. 【5】SVM算法原理

    大纲 简介 支持向量机(support vector machines)是一个二分类的分类模型(或者叫做分类器).如图: 它分类的思想是,给定给一个包含正例和反例的样本集合,svm的目的是寻找一个超平 ...