分布式锁

在分布式环境中,为了保证业务数据的正常访问,防止出现重复请求的问题,会使用分布式锁来阻拦后续请求。具体伪代码如下:

  public void doSomething(String userId){
        User user=getUser(userId);
        if(user==null){
            user.setUserName("xxxxx");
            user.setUserId(userId);
            insert(user);
            return;
        }
        update(user);
    }

上面的代码很简单,查询db中有没有对应的user数据,如果有的话,执行更新操作,如果没有则插入。

我们知道,上面的代码是线程不安全的,在多线程的环境中,就会出现问题。为了能够保证数据的正确性,在单机环境下,我们可以使用synchronized的方法,来保证线程安全,具体修改:

  public synchronized void doSomething(String userId){
        User user=getUser(userId);
        if(user==null){
            user.setUserName("xxxxx");
            user.setUserId(userId);
            insert(user);
            return;
        }
        update(user);
    }

在单机器的环境下,能够解决线程安全的问题,那在分布式环境下呢? 这个时候需要用到分布式锁.

分布式锁需要借助其他组件来实现,常用的有rediszookeeper。下面我们就用redis的实现,来说明下问题,分布式锁具体的实现方法如下

    public  void doSomething(String userId){
        String lock=RedisUtils.get("xxxx"+userId);
        if(StringUtils.isNotEmpty(lock)){//说明当前userId已经被锁定
            return;
        }
        RedisUtils.set("xxxx"+userId,userId,1000);//锁定10s
        User user=getUser(userId);
        if(user==null){
            insert(user);
            RedisUtils.delete("xxxx"+userId);
            return;
        }
        update(user);
        RedisUtils.delete("xxxx"+userId);

    }

上面的代码解决了在分布式环境中的并发的问题。但同样需要考虑一个问题,如果insert操作和update操作异常了,分布式锁不会释放,后续的请求还会被拦截。

所以我们再优化,增加对异常的捕获。

 public  void doSomething(String userId){
        try {
                String lock=RedisUtils.get("xxxx"+userId);
                if(StringUtils.isNotEmpty(lock)){//说明当前userId已经被锁定
                    return;
                }
                RedisUtils.set("xxxx"+userId,userId,1000);//锁定1s
                User user=getUser(userId);
                if(user==null){
                    insert(user);
                    return;
                }
                update(user);
        }
        catch(Exception ex){

        }
        finally{
            RedisUtils.delete("xxxx"+userId);
        }
    }

现在即使是程序异常了,锁会自动释放。但redis的get和set也会存在并发问题,我们再继续优化,使用redis中的setnx方法

    public  void doSomething(String userId){
        try {
                boolean lock=RedisUtils.setnx("xxxx"+userId,userId,1000);//锁定1s
                if(!lock){//说明当前userId已经被锁定
                    return;
                }
                User user=getUser(userId);
                if(user==null){
                    insert(user);
                    return;
                }
                update(user);
        }
        catch(Exception ex){

        }
        finally{
            RedisUtils.delete("xxxx"+userId);
        }
    }

上面的代码好像没有什么问题了,但也存在很大的隐患。 我们分析下,假设第一个请求过来,执行锁定成功,程序开始运行,但是insert和update操作阻塞了1s,第二个请求过来,锁的缓存已经过期,第二个执行锁定成功,这个时候第一个请求完成了锁被释放,第二个请求的锁就被第一次请求释放了,第三次的请求就会造成线程不安全问题。

怎么再去优化呢?问题主要是出现在第一次请求误删锁的问题,所以我们在移除锁的时候要判断能否移除。

思路:我们在锁定的时候,value使用当前的时间戳,删除时判断是否过期如果不过期就不要删除,具体代码如下:

public  void doSomething(String userId){
        try {
                boolean lock=RedisUtils.setnx("xxxx"+userId,LocalDateTime.now(),1000);//锁定10s
                if(!lock){//说明当前userId已经被锁定
                    return;
                }
                User user=getUser(userId);
                if(user==null){
                    insert(user);
                    return;
                }
                update(user);
        }
        catch(Exception ex){

        }
        finally{
            LocalDateTime lockTIme=    RedisUtils.get("xxxx"+userId);
            if(lockTIme.compare(LocalDateTime.now())<0){
                //说明已经过期,可以删除key
                RedisUtils.delete("xxxx"+userId);
            }
        }
    }

这样即使出现阻塞,第二次的时间戳覆盖了第一次的锁定,这样即使第一次完成了,也不会释放锁。

redis分布式锁的问题和解决的更多相关文章

  1. 使用Redis分布式锁处理并发,解决超卖问题

    一.使用Apache ab模拟并发压测 1.压测工具介绍 $ ab -n 100 -c 100 http://www.baidu.com/ -n表示发出100个请求,-c模拟100个并发,相当是100 ...

  2. Redis分布式锁解决抢购问题

    转:https://segmentfault.com/a/1190000011421467 废话不多说,首先分享一个业务场景-抢购.一个典型的高并发问题,所需的最关键字段就是库存,在高并发的情况下每次 ...

  3. 利用redis分布式锁的功能来实现定时器的分布式

    文章来源于我的 iteye blog http://ak478288.iteye.com/blog/1898190 以前为部门内部开发过一个定时器程序,这个定时器很简单,就是配置quartz,来实现定 ...

  4. 关于分布式锁原理的一些学习与思考-redis分布式锁,zookeeper分布式锁

    首先分布式锁和我们平常讲到的锁原理基本一样,目的就是确保,在多个线程并发时,只有一个线程在同一刻操作这个业务或者说方法.变量. 在一个进程中,也就是一个jvm 或者说应用中,我们很容易去处理控制,在j ...

  5. springboot+redis分布式锁-模拟抢单

    本篇内容主要讲解的是redis分布式锁,这个在各大厂面试几乎都是必备的,下面结合模拟抢单的场景来使用她:本篇不涉及到的redis环境搭建,快速搭建个人测试环境,这里建议使用docker:本篇内容节点如 ...

  6. Lua脚本在redis分布式锁场景的运用

    目录 锁和分布式锁 锁是什么? 为什么需要锁? Java中的锁 分布式锁 redis 如何实现加锁 锁超时 retry redis 如何释放锁 不该释放的锁 通过Lua脚本实现锁释放 用redis做分 ...

  7. Redlock(redis分布式锁)原理分析

    Redlock:全名叫做 Redis Distributed Lock;即使用redis实现的分布式锁: 使用场景:多个服务间保证同一时刻同一时间段内同一用户只能有一个请求(防止关键业务出现并发攻击) ...

  8. 【分布式缓存系列】集群环境下Redis分布式锁的正确姿势

    一.前言 在上一篇文章中,已经介绍了基于Redis实现分布式锁的正确姿势,但是上篇文章存在一定的缺陷——它加锁只作用在一个Redis节点上,如果通过sentinel保证高可用,如果master节点由于 ...

  9. Redis 分布式锁的实现

    0X00 测试环境 CentOS 6.6 + Redis 3.2.10 + PHP 7.0.7(+ phpredis 4.1.0) [root@localhost ~]# cat /etc/issue ...

随机推荐

  1. Android零基础入门第40节:自定义ArrayAdapter

    原文:Android零基础入门第40节:自定义ArrayAdapter ListView用起来还是比较简单的,也是Android应用程序中最重要的一个组件,但其他ListView可以随你所愿,能够完成 ...

  2. Collection was modified; enumeration operation may not execute.的异常处理

    Collection was modified; enumeration operation may not execute.的异常处理 在运行程序时遇到这样一段异常,仔细检查后发现是使用Foreac ...

  3. spring.net的简单使用(四)对象属性注入

    创建了对象,如果是简单对象就到此为止,如果是复杂对象,则需要为它的属性赋值. 属性赋值有两种方法:属性注入和构造器注入. 一.属性注入 在object节点下使用property就是属性注入,如下: & ...

  4. Delphi下IOC 模式的实现(反转模式,即Callback模式)

    IOC英文为 Inversion of Control,即反转模式,这里有著名的好莱坞理论:你呆着别动,到时我会找你.Ioc模式是解决调用者和被调用者之间关系的模式,可以有效降低软件的耦合度,并适合团 ...

  5. 使用VS2010开发Qt程序的4点经验(QT4到QT5的升级,更改sln文件,切换工程使用的Qt库,在VS的Solution Explorer视图中建立文件夹)

    导读 相比于Qt Creator,我更喜欢用VS2010来进行开发.虽然启动时间相对较慢,但是VS下强大的快捷键和丰富的插件,以及使用多年的经验,都让我觉得在开发过程中得心应手.其中最重要的一点是,有 ...

  6. SQL 游标知识整理

    游标声明格: declare 游标名称 cursor (游标关键字) for 游标操作对象(select * from 表名称)游标使用: open 游标名称; fetch first from 游标 ...

  7. Django预备知识

    http协议 url: 协议://域名(IP)+端口(80)/路径?参数(a=1&b=2) 示例:https://www.baidu.com/s/?wd=aaa MVC M:mdoel 与数据 ...

  8. hive表批处理

    对hive中的表进行批量处理,如下是一个简单的脚本 #给定一个hive数据库名,生成它的所有表的create SQL语句,并导出到文件 create_fun(){ hive -e } #显示一个表中所 ...

  9. hadoop之hive建表语句备份

    转自:https://blog.csdn.net/t___z/article/details/78492113 #!/bin/bash hive -e "use lbi;show table ...

  10. shell多线程(2)之基于管道实现并发

    在shell脚本里批量执行程序是比较常见的方式,如果程序很多,每个执行时间比较长,则顺序执行需要花费大量的时间. 此时并发就成为我们考虑的方向. 上篇<shell多线程>中我们已经简单实现 ...