两个多维高斯分布之间的KL散度推导
在深度学习中,我们通常对模型进行抽样并计算与真实样本之间的损失,来估计模型分布与真实分布之间的差异。并且损失可以定义得很简单,比如二范数即可。但是对于已知参数的两个确定分布之间的差异,我们就要通过推导的方式来计算了。
下面对已知均值与协方差矩阵的两个多维高斯分布之间的KL散度进行推导。当然,因为便于分布之间的逼近,Wasserstein distance可能是衡量两个分布之间差异的更好方式,但这个有点难,以后再记录。
首先定义两个$n$维高斯分布如下:
$\begin{aligned} &p(x) = \frac{1}{(2\pi)^{0.5n}|\Sigma|^{0.5}}\exp\left(-\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)\right)\\ &q(x) = \frac{1}{(2\pi)^{0.5n}|L|^{0.5}}\exp\left(-\frac{1}{2}(x-m)^T L^{-1}(x-m)\right)\\ \end{aligned}$
需要计算的是:
$\begin{aligned} \text{KL}(p||q) = \text{E}_p\left(\log\frac{p(x)}{q(x)}\right) \end{aligned}$
为了方便说明,下面分步进行推导。首先:
$\begin{aligned} \frac{p(x)}{q(x)} &= \frac {\frac{1}{(2\pi)^{0.5n}|\Sigma|^{0.5}}\exp\left(-\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)\right)} {\frac{1}{(2\pi)^{0.5n}|L|^{0.5}}\exp\left(-\frac{1}{2}(x-m)^T L^{-1}(x-m)\right)}\\ &=\left(\frac{|L|}{|\Sigma|}\right)^{0.5}\exp\left(\frac{1}{2}(x-m)^T L^{-1}(x-m) -\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)\right) \end{aligned}$
然后加上对数:
$\begin{aligned} \log\frac{p(x)}{q(x)} &= \frac{1}{2}\log\frac{|L|}{|\Sigma|}+ \frac{1}{2}(x-m)^T L^{-1}(x-m) - \frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu) \end{aligned}$
再加上期望:
$\begin{aligned} \text{E}_p\log\frac{p(x)}{q(x)} &=\frac{1}{2}\log\frac{|L|}{|\Sigma|}+ \text{E}_p\left[\frac{1}{2}(x-m)^T L^{-1}(x-m) - \frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)\right]\\ &=\frac{1}{2}\log\frac{|L|}{|\Sigma|}+ \text{E}_p\text{Tr}\left[\frac{1}{2}(x-m)^T L^{-1}(x-m) - \frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)\right]\\ \end{aligned}$
第二步是因为结果为标量,可以转换为计算迹的形式。接着由迹的平移不变性得:
$\begin{align} &\frac{1}{2}\log\frac{|L|}{|\Sigma|}+ \text{E}_p\text{Tr} \left[ \frac{1}{2}L^{-1}(x-m)(x-m)^T - \frac{1}{2}\Sigma^{-1}(x-\mu)(x-\mu)^T \right]\\ = &\frac{1}{2}\log\frac{|L|}{|\Sigma|}+ \frac{1}{2}\text{E}_p\text{Tr} \left(L^{-1}(x-m)(x-m)^T\right) - \frac{1}{2}\text{E}_p\text{Tr} \left(\Sigma^{-1}(x-\mu)(x-\mu)^T\right) \\ = &\frac{1}{2}\log\frac{|L|}{|\Sigma|}+ \frac{1}{2}\text{E}_p\text{Tr} \left(L^{-1}(x-m)(x-m)^T\right) - \frac{n}{2} \end{align}$
其中最后一项是因为,首先期望与迹可以调换位置,然后$(x-\mu)(x-\mu)^T$在分布$p$下的期望就是对应的协方差矩阵$\Sigma$,于是得到一个$n$维单位阵,再计算单位阵的迹为$n$。
接下来,把中间项提出来推导,得:
$\begin{align} &\frac{1}{2}\text{E}_p\text{Tr} \left(L^{-1}(x-m)(x-m)^T\right)\\ =&\frac{1}{2}\text{Tr}\left(L^{-1}\text{E}_p \left(xx^T-xm^T-mx^T+mm^T \right) \right) \\ =&\frac{1}{2}\text{Tr}\left(L^{-1} \left(\Sigma +\mu\mu^T-2\mu m^T+mm^T \right) \right) \end{align}$
其中$\text{E}_p(xx^T) = \Sigma + \mu\mu^T$推导如下:
$\begin{aligned} \Sigma &= \text{E}_p\left[(x-\mu)(x-\mu)^T\right]\\ &= \text{E}_p\left(xx^T-x\mu^T-\mu x^T+\mu\mu^T\right)\\ &= \text{E}_p\left(xx^T\right)-2\text{E}_p\left(x\mu^T\right)+\mu\mu^T \\ &= \text{E}_p\left(xx^T\right)-\mu\mu^T \\ \end{aligned}$
接着推导$(6)$式:
$\begin{aligned} &\frac{1}{2}\text{Tr}\left(L^{-1} \left(\Sigma +\mu\mu^T-2\mu m^T+mm^T \right) \right) \\ = &\frac{1}{2}\text{Tr}\left(L^{-1}\Sigma +L^{-1} (\mu-m)(\mu-m)^T \right) \\ = &\frac{1}{2}\text{Tr}\left(L^{-1}\Sigma\right)+ \frac{1}{2}(\mu-m)L^{-1}(\mu-m)^T \\ \end{aligned}$
最后代回$(3)$式,得到最终结果:
$\begin{aligned} \text{E}_p\log\frac{p(x)}{q(x)} =&\frac{1}{2}\left\{ \log\frac{|L|}{|\Sigma|}+ \text{Tr}\left(L^{-1}\Sigma\right)+ (\mu-m)L^{-1}(\mu-m)^T - n \right\} \end{aligned}$
参考于:两个多维高斯分布的Kullback-Leibler divergence(KL散度)
两个多维高斯分布之间的KL散度推导的更多相关文章
- KL散度相关理解以及视频推荐
以下内容基于对[中字]信息熵,交叉熵,KL散度介绍||机器学习的信息论基础这个视频的理解,请务必先看几遍这个视频. 假设一个事件可能有多种结果,每一种结果都有其发生的概率,概率总和为1,也即一个数据分 ...
- KL散度
摘自: https://www.jianshu.com/p/43318a3dc715?from=timeline&isappinstalled=0 一.解决的问题 量化两种概率分布P和Q可以使 ...
- C#用反射实现两个类的对象之间相同属性的值的复制
在进行实体转换操作的时候如果需要在对两个实体之间两个属性字段差不多相同的类要进行一个互相的转换,我们要把a对象的所有字段的值都复制给b对象,我们只能用b.属性=a.属性来写,如果属性字段太多的话,就要 ...
- 深度学习中交叉熵和KL散度和最大似然估计之间的关系
机器学习的面试题中经常会被问到交叉熵(cross entropy)和最大似然估计(MLE)或者KL散度有什么关系,查了一些资料发现优化这3个东西其实是等价的. 熵和交叉熵 提到交叉熵就需要了解下信息论 ...
- PHP计算两个已知经纬度之间的距离
/** *求两个已知经纬度之间的距离,单位为千米 *@param lng1,lng2 经度 *@param lat1,lat2 纬度 *@return float 距离,单位千米 **/ privat ...
- KL散度(Kullback–Leibler divergence)
KL散度是度量两个分布之间差异的函数.在各种变分方法中,都有它的身影. 转自:https://zhuanlan.zhihu.com/p/22464760 一维高斯分布的KL散度 多维高斯分布的KL散度 ...
- PRML读书会第十章 Approximate Inference(近似推断,变分推断,KL散度,平均场, Mean Field )
主讲人 戴玮 (新浪微博: @戴玮_CASIA) Wilbur_中博(1954123) 20:02:04 我们在前面看到,概率推断的核心任务就是计算某分布下的某个函数的期望.或者计算边缘概率分布.条件 ...
- 从香农熵到手推KL散度
信息论与信息熵是 AI 或机器学习中非常重要的概念,我们经常需要使用它的关键思想来描述概率分布或者量化概率分布之间的相似性.在本文中,我们从最基本的自信息和信息熵到交叉熵讨论了信息论的基础,再由最大似 ...
- 【原】浅谈KL散度(相对熵)在用户画像中的应用
最近做用户画像,用到了KL散度,发现效果还是不错的,现跟大家分享一下,为了文章的易读性,不具体讲公式的计算,主要讲应用,不过公式也不复杂,具体可以看链接. 首先先介绍一下KL散度是啥.KL散度全称Ku ...
随机推荐
- Dungeon Master(三维bfs)
You are trapped in a 3D dungeon and need to find the quickest way out! The dungeon is composed of un ...
- 小程序开发-开发模式下关闭http域名校验
小程序开发模式去掉域名校验 我们在开发小程序的时候如果用到其他网络地址,在小程序运行时调试器会输出 : http://www.example.com 不在以下 request 合法域名列表中,请参考文 ...
- vue-axios拦截器
"use strict"; import QS from "qs"; import Axios from "axios"; import s ...
- 使用 Promise 实现任务队列发送请求,实现最大请求数目限制
核心 设置最大请求数量,当前请求数量,待执行队列 调用时,创建一个新任务,然后判断是否达到最大请求数量,若达到则将任务追加到待执行队列,否则,则直接执行该任务.并返回Promise 创建任务时,需要返 ...
- LC算法技巧总结(二):双指针和滑动窗口技巧
我把双指针技巧再分为两类,一类是「快慢指针」,一类是「左右指针」.前者解决主要解决链表中的问题,比如典型的判定链表中是否包含环:后者主要解决数组(或者字符串)中的问题,比如二分查找. 一.快慢指针的常 ...
- python中的一些内置函数
1.布尔类型 2.求和sum 3.取全局变量和局部变量 4.ascii码和字符集 chr().ord() 5.看某个功能下有哪些方法 help(x).dir(x) 6.exec执行python代码 7 ...
- [剑指Offer]66-构建乘积数组
题目 给定一个数组A[0,1,...,n-1],请构建一个数组B[0,1,...,n-1],其中B中的元素B[i]=A[0]A[1]...A[i-1]A[i+1]...A[n-1].不能使用除法. 题 ...
- SpringCloud OpenFeign Post请求的坑
在微服务开发中SpringCloud全家桶集成了OpenFeign用于服务调用,SpringCloud的OpenFeign使用SpringMVCContract来解析OpenFeign的接口定义. 但 ...
- 《方法总结》C路的方法发现
C语言方法荟萃 定义一个最大值和最小值:#define max(x,y) ( x>y?x:y ) #define min(x,y) ( x<y?x:y ) &&: 说得 ...
- 手写spring
体系结构 Spring 有可能成为所有企业应用程序的一站式服务点,然而,Spring 是模块化的,允许你挑选和选择适用于你的模块,不必要把剩余部分也引入.下面的部分对在 Spring 框架中所有可用的 ...