在深度学习中,我们通常对模型进行抽样并计算与真实样本之间的损失,来估计模型分布与真实分布之间的差异。并且损失可以定义得很简单,比如二范数即可。但是对于已知参数的两个确定分布之间的差异,我们就要通过推导的方式来计算了。

  下面对已知均值与协方差矩阵的两个多维高斯分布之间的KL散度进行推导。当然,因为便于分布之间的逼近,Wasserstein distance可能是衡量两个分布之间差异的更好方式,但这个有点难,以后再记录。

  首先定义两个$n$维高斯分布如下:

$\begin{aligned} &p(x) = \frac{1}{(2\pi)^{0.5n}|\Sigma|^{0.5}}\exp\left(-\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)\right)\\ &q(x) = \frac{1}{(2\pi)^{0.5n}|L|^{0.5}}\exp\left(-\frac{1}{2}(x-m)^T L^{-1}(x-m)\right)\\ \end{aligned}$

  需要计算的是:

$\begin{aligned} \text{KL}(p||q) = \text{E}_p\left(\log\frac{p(x)}{q(x)}\right) \end{aligned}$

  为了方便说明,下面分步进行推导。首先:

$\begin{aligned} \frac{p(x)}{q(x)} &= \frac {\frac{1}{(2\pi)^{0.5n}|\Sigma|^{0.5}}\exp\left(-\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)\right)} {\frac{1}{(2\pi)^{0.5n}|L|^{0.5}}\exp\left(-\frac{1}{2}(x-m)^T L^{-1}(x-m)\right)}\\ &=\left(\frac{|L|}{|\Sigma|}\right)^{0.5}\exp\left(\frac{1}{2}(x-m)^T L^{-1}(x-m) -\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)\right) \end{aligned}$

  然后加上对数:

$\begin{aligned} \log\frac{p(x)}{q(x)} &= \frac{1}{2}\log\frac{|L|}{|\Sigma|}+ \frac{1}{2}(x-m)^T L^{-1}(x-m) - \frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu) \end{aligned}$

  再加上期望:

$\begin{aligned} \text{E}_p\log\frac{p(x)}{q(x)} &=\frac{1}{2}\log\frac{|L|}{|\Sigma|}+ \text{E}_p\left[\frac{1}{2}(x-m)^T L^{-1}(x-m) - \frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)\right]\\ &=\frac{1}{2}\log\frac{|L|}{|\Sigma|}+ \text{E}_p\text{Tr}\left[\frac{1}{2}(x-m)^T L^{-1}(x-m) - \frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)\right]\\ \end{aligned}$

  第二步是因为结果为标量,可以转换为计算迹的形式。接着由迹的平移不变性得:

$\begin{align} &\frac{1}{2}\log\frac{|L|}{|\Sigma|}+ \text{E}_p\text{Tr} \left[ \frac{1}{2}L^{-1}(x-m)(x-m)^T - \frac{1}{2}\Sigma^{-1}(x-\mu)(x-\mu)^T \right]\\ = &\frac{1}{2}\log\frac{|L|}{|\Sigma|}+ \frac{1}{2}\text{E}_p\text{Tr} \left(L^{-1}(x-m)(x-m)^T\right) - \frac{1}{2}\text{E}_p\text{Tr} \left(\Sigma^{-1}(x-\mu)(x-\mu)^T\right) \\ = &\frac{1}{2}\log\frac{|L|}{|\Sigma|}+ \frac{1}{2}\text{E}_p\text{Tr} \left(L^{-1}(x-m)(x-m)^T\right) - \frac{n}{2} \end{align}$

  其中最后一项是因为,首先期望与迹可以调换位置,然后$(x-\mu)(x-\mu)^T$在分布$p$下的期望就是对应的协方差矩阵$\Sigma$,于是得到一个$n$维单位阵,再计算单位阵的迹为$n$。

  接下来,把中间项提出来推导,得:

$\begin{align} &\frac{1}{2}\text{E}_p\text{Tr} \left(L^{-1}(x-m)(x-m)^T\right)\\ =&\frac{1}{2}\text{Tr}\left(L^{-1}\text{E}_p \left(xx^T-xm^T-mx^T+mm^T \right) \right) \\ =&\frac{1}{2}\text{Tr}\left(L^{-1} \left(\Sigma +\mu\mu^T-2\mu m^T+mm^T \right) \right)  \end{align}$

  其中$\text{E}_p(xx^T) = \Sigma + \mu\mu^T$推导如下:

$\begin{aligned} \Sigma &= \text{E}_p\left[(x-\mu)(x-\mu)^T\right]\\ &= \text{E}_p\left(xx^T-x\mu^T-\mu x^T+\mu\mu^T\right)\\ &= \text{E}_p\left(xx^T\right)-2\text{E}_p\left(x\mu^T\right)+\mu\mu^T \\ &= \text{E}_p\left(xx^T\right)-\mu\mu^T \\ \end{aligned}$

  接着推导$(6)$式:

$\begin{aligned} &\frac{1}{2}\text{Tr}\left(L^{-1} \left(\Sigma +\mu\mu^T-2\mu m^T+mm^T \right) \right) \\ = &\frac{1}{2}\text{Tr}\left(L^{-1}\Sigma +L^{-1} (\mu-m)(\mu-m)^T \right) \\ = &\frac{1}{2}\text{Tr}\left(L^{-1}\Sigma\right)+ \frac{1}{2}(\mu-m)L^{-1}(\mu-m)^T  \\ \end{aligned}$

  最后代回$(3)$式,得到最终结果:

$\begin{aligned} \text{E}_p\log\frac{p(x)}{q(x)} =&\frac{1}{2}\left\{ \log\frac{|L|}{|\Sigma|}+ \text{Tr}\left(L^{-1}\Sigma\right)+ (\mu-m)L^{-1}(\mu-m)^T  - n \right\} \end{aligned}$

  参考于:两个多维高斯分布的Kullback-Leibler divergence(KL散度)

两个多维高斯分布之间的KL散度推导的更多相关文章

  1. KL散度相关理解以及视频推荐

    以下内容基于对[中字]信息熵,交叉熵,KL散度介绍||机器学习的信息论基础这个视频的理解,请务必先看几遍这个视频. 假设一个事件可能有多种结果,每一种结果都有其发生的概率,概率总和为1,也即一个数据分 ...

  2. KL散度

    摘自: https://www.jianshu.com/p/43318a3dc715?from=timeline&isappinstalled=0 一.解决的问题 量化两种概率分布P和Q可以使 ...

  3. C#用反射实现两个类的对象之间相同属性的值的复制

    在进行实体转换操作的时候如果需要在对两个实体之间两个属性字段差不多相同的类要进行一个互相的转换,我们要把a对象的所有字段的值都复制给b对象,我们只能用b.属性=a.属性来写,如果属性字段太多的话,就要 ...

  4. 深度学习中交叉熵和KL散度和最大似然估计之间的关系

    机器学习的面试题中经常会被问到交叉熵(cross entropy)和最大似然估计(MLE)或者KL散度有什么关系,查了一些资料发现优化这3个东西其实是等价的. 熵和交叉熵 提到交叉熵就需要了解下信息论 ...

  5. PHP计算两个已知经纬度之间的距离

    /** *求两个已知经纬度之间的距离,单位为千米 *@param lng1,lng2 经度 *@param lat1,lat2 纬度 *@return float 距离,单位千米 **/ privat ...

  6. KL散度(Kullback–Leibler divergence)

    KL散度是度量两个分布之间差异的函数.在各种变分方法中,都有它的身影. 转自:https://zhuanlan.zhihu.com/p/22464760 一维高斯分布的KL散度 多维高斯分布的KL散度 ...

  7. PRML读书会第十章 Approximate Inference(近似推断,变分推断,KL散度,平均场, Mean Field )

    主讲人 戴玮 (新浪微博: @戴玮_CASIA) Wilbur_中博(1954123) 20:02:04 我们在前面看到,概率推断的核心任务就是计算某分布下的某个函数的期望.或者计算边缘概率分布.条件 ...

  8. 从香农熵到手推KL散度

    信息论与信息熵是 AI 或机器学习中非常重要的概念,我们经常需要使用它的关键思想来描述概率分布或者量化概率分布之间的相似性.在本文中,我们从最基本的自信息和信息熵到交叉熵讨论了信息论的基础,再由最大似 ...

  9. 【原】浅谈KL散度(相对熵)在用户画像中的应用

    最近做用户画像,用到了KL散度,发现效果还是不错的,现跟大家分享一下,为了文章的易读性,不具体讲公式的计算,主要讲应用,不过公式也不复杂,具体可以看链接. 首先先介绍一下KL散度是啥.KL散度全称Ku ...

随机推荐

  1. Pandas | Dataframe的merge操作,像数据库一样尽情join

    今天是pandas数据处理第8篇文章,我们一起来聊聊dataframe的合并. 常见的数据合并操作主要有两种,第一种是我们新生成了新的特征,想要把它和旧的特征合并在一起.第二种是我们新获取了一份数据集 ...

  2. VS提交码云权限问题

    提交代码时出现Git failed with a fatal error. Authentication failed的问题. 如果没有像当前代码库提交过代码(所有项目),那么提交时会提示输入账号密码 ...

  3. 小程序开发-页面导航栏navigation-bar组件

    导航栏navigation-bar 页面导航条配置节点,用于指定导航栏的一些属性.只能是 page-meta 组件内的第一个节点,需要配合它一同使用. 通过这个节点可以获得类似于调用 wx.setNa ...

  4. 跟着尚硅谷系统学习Docker-【day04】

    day04-20200716   p18.docker容器数据卷   docker容器中的数据,做持久化. 容器关闭以后容器内的数据就没有了. 保存到数据库或者服务器宿主机里面.   作用:容器间可以 ...

  5. Oracle WITH 语句 语法

    With语句可以在查询中做成一个临时表/View,用意是在接下来的SQL中重用,而不需再写一遍. With Clause方法的优点: 增加了SQL的易读性,如果构造了多个子查询,结构会更清晰. 示例: ...

  6. Visual Studio Code 下载安装

    1.官网下载:https://code.visualstudio.com/ 2.下载完成后,点开如果是黑屏的话,右键勾上.

  7. 【原创】Linux虚拟化KVM-Qemu分析(三)之KVM源码(1)

    背景 Read the fucking source code! --By 鲁迅 A picture is worth a thousand words. --By 高尔基 说明: KVM版本:5.9 ...

  8. Windows10 安装 CUDA + cuDNN + pyTorch

    2020/5/29 在 windows10 上面安装 CUDA 和 cuDNN 0.简单了解一下 CUDA 和 cuDNN 1)什么是 CUDA CUDA(ComputeUnified Device ...

  9. SpringBoot中使用切面的每次传的参数,进行解析,验签,并返回解码后的参数

    目的,在每次请求的时候,对每次传的参数,进行解析,验签,并返回解码后的参数, 以json传递: 例子背景: IOT平台提供对外可访问的接口, 需要对所有参数的传递做到 不泄露.认证的目的:所以需要在每 ...

  10. Prometheus Metrics 设计的最佳实践和应用实例,看这篇够了!

    Prometheus 是一个开源的监控解决方案,部署简单易使用,难点在于如何设计符合特定需求的 Metrics 去全面高效地反映系统实时状态,以助力故障问题的发现与定位.本文即基于最佳实践的 Metr ...