[Luogu P3338] [ZJOI2014]力 (数论 FFT 卷积)
题面
传送门:
Solution
写到脑壳疼,我好菜啊
我们来颓柿子吧
\(F_j=\sum_{i<j}\frac{q_i*q_j}{(i-j)^2}-\sum_{i>j}\frac{q_i*q_j}{(i-j)^2}\)
\(q_j\)与\(i\)没有半毛钱关系,提到外面去
\(F_j=q_j*\sum_{i<j}\frac{q_i}{(i-j)^2}-q_j*\sum_{i>j}\frac{q_i}{(i-j)^2}\)
左右同时除以\(q_j\)
\(E_j=\sum_{i=1}^{j-1}\frac{q_i}{(i-j)^2}-\sum_{i=j+1}^{n}\frac{q_i}{(i-j)^2}\)
我们设\(f(i)=q(i),g(i)=\frac{1}{i^2}\),有
\(E_j=\sum_{i=1}^{j-1}f(i)*g(i-j)-\sum_{i=j+1}^{n}f(i)*g(i-j)\)
因为\(g(i)\)是个偶函数,因此有:
\(E_j=\sum_{i=1}^{j-1}f(i)*g(j-i)-\sum_{i=j+1}^{n}f(i)*g(i-j)\)
这时候,我们显然可以发现左边那个式子是个卷积,右边的这样一波化简就也变成了卷积形式:
卷积用FFT快速计算即可
时间复杂度\(O(nlogn)\)
Code
//Luogu P3338 [ZJOI2014]力
//Jan,18th,2019
//FFT加速卷积
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<complex>
using namespace std;
typedef complex <double> cp;
const double PI=acos(-1);
const int M=100000+100;
const int N=8*M;
inline cp omega(int K,int n)
{
return cp(cos(2*PI*K/n),sin(2*PI*K/n));
}
void FFT(cp a[],int n,bool type)
{
static int len=0,num=n-1,t[N];
while(num!=0) len++,num/=2;
for(int i=0,j;i<=n;i++)
{
for(j=0,num=i;j<len;j++)
t[j]=num%2,num/=2;
reverse(t,t+len);
for(j=0,num=0;j<len;j++)
num+=t[j]*(1<<j);
if(i<num) swap(a[i],a[num]);
}
for(int l=2;l<=n;l*=2)
{
int m=l/2;
cp x0=omega(1,l);
if(type==true) x0=conj(x0);
for(int j=0;j<n;j+=l)
{
cp x=cp(1,0);
for(int k=0;k<m;k++,x*=x0)
{
cp temp=x*a[j+k+m];
a[j+k+m]=a[j+k]-temp;
a[j+k]=a[j+k]+temp;
}
}
}
}
int n,m;
double q[N];
cp f[N],g[N],f2[N];
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%lf",&q[i]);
for(int i=1;i<=n;i++)
g[i]=(1.0/i/i);
m=1;
while(m<2*n) m*=2;
for(int i=1;i<m;i++)
f[i]=q[i],f2[i]=q[i];
FFT(g,m,false);
FFT(f,m,false);
reverse(f2+1,f2+n+1);
FFT(f2,m,false);
for(int i=0;i<m;i++)
f[i]*=g[i],f2[i]*=g[i];
FFT(f,m,true);
FFT(f2,m,true);
for(int i=1;i<=n;i++)
printf("%lf\n",(f[i].real()-f2[n-i+1].real())/m);
return 0;
}
[Luogu P3338] [ZJOI2014]力 (数论 FFT 卷积)的更多相关文章
- [Luogu]P3338 [ZJOI2014]力(FFT)
题目描述 给出\(n\)个数\(q_i\),给出\(F_j\)的定义如下: \(F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{i>j}\fr ...
- 【BZOJ】3527: [Zjoi2014]力(fft+卷积)
http://www.lydsy.com/JudgeOnline/problem.php?id=3527 好好的一道模板题,我自己被自己坑了好久.. 首先题目看错.......什么玩意.......首 ...
- 洛谷P3338 [ZJOI2014]力(FFT)
传送门 题目要求$$E_i=\frac{F_i}{q_i}=\sum_{j=1}^{i-1}\frac{q_j}{(i-j)^2}-\sum_{j=i+1}^n\frac{q_j}{(j-i)^2}$ ...
- luogu P3338 [ZJOI2014]力
传送门 首先化简原式\[F_j=\sum_{i<j}\frac{q_iq_j}{(i-j)^2}-\sum_{i>j}\frac{q_iq_j}{(i-j)^2},E_j=F_j/q_j\ ...
- P3338 [ZJOI2014]力(FFT)
题目 P3338 [ZJOI2014]力 做法 普通卷积形式为:\(c_k=\sum\limits_{i=1}^ka_ib_{k-i}\) 其实一般我们都是用\(i=0\)开始的,但这题比较特殊,忽略 ...
- [洛谷P3338] [ZJOI2014]力
洛谷题目链接:P3338 [ZJOI2014]力 题目描述 给出n个数qi,给出Fj的定义如下: \[F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_ ...
- 洛谷 P3338 [ZJOI2014]力 解题报告
P3338 [ZJOI2014]力 题目描述 给出n个数qi,给出Fj的定义如下: \(F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{i>j ...
- 【BZOJ 3527】 3527: [Zjoi2014]力 (FFT)
3527: [Zjoi2014]力 Time Limit: 30 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 2003 Solved: 11 ...
- P3338 [ZJOI2014]力 /// FFT 公式转化翻转
题目大意: https://www.luogu.org/problemnew/show/P3338 题解 #include <bits/stdc++.h> #define N 300005 ...
随机推荐
- 国产化之路-统信UOS + Nginx + Asp.Net MVC + EF Core 3.1 + 达梦DM8实现简单增删改查操作
专题目录 国产化之路-统信UOS操作系统安装 国产化之路-国产操作系统安装.net core 3.1 sdk 国产化之路-安装WEB服务器 国产化之路-安装达梦DM8数据库 国产化之路-统信UOS + ...
- 052 01 Android 零基础入门 01 Java基础语法 05 Java流程控制之循环结构 14 Eclipse下程序调试——debug2 多断点调试程序
052 01 Android 零基础入门 01 Java基础语法 05 Java流程控制之循环结构 14 Eclipse下程序调试--debug2 多断点调试程序 本文知识点: Eclipse下程序调 ...
- JavaScript DOM三种创建元素的方式
三种创建元素的方式: document.write() element.innerHTML document.createElement() 初始HTML内容: <button>btn&l ...
- day44 Pyhton 数据库Mysql
内容回顾 什么是进程? 就是为了形容执行中的程序的一种称呼 它是操作系统中资源分配的最小单位 进程之间是数据隔离的,占用操作系统资源相对多 独立存在的 谈谈你对并发的理解 同时有多个任务需要执行,但是 ...
- CentOS 7的安装与部署 02
2.2 操作系统安装过程 第01步:加载系统镜像 第02步:启动虚拟主机 第03步:系统安装选择界面修改网卡名称 启动虚拟机后,会出现选择菜单,首先用方向键选择 install centos7选项,然 ...
- Android Jetpack从入门到精通(深度好文,值得收藏)
前言 即学即用Android Jetpack系列Blog的目的是通过学习Android Jetpack完成一个简单的Demo,本文是即学即用Android Jetpack系列Blog的第一篇. 记得去 ...
- 【xenomai内核解析】系列文章大纲
xenomai内核解析 本博客为本人学习linux实时操作系统框架xenomai的一些记录,主要剖析xenomai内核实现,以及与linux相关的知识.方便读者定位具体文章,现列出本博客大纲,后续会陆 ...
- linux(centos8): 临时关闭/永久关闭交换分区swap?
一,为什么要关闭swap? 1,swap的用途? swap 分区就是交换分区,(windows平台叫虚拟内存) 在物理内存不够用时, 操作系统会从物理内存中把部分暂时不被使用的数据转移到交换分区, 从 ...
- 极简 Node.js 入门 - 5.3 静态资源服务器
极简 Node.js 入门系列教程:https://www.yuque.com/sunluyong/node 本文更佳阅读体验:https://www.yuque.com/sunluyong/node ...
- Linux基础命令之getent
getent命令简述 getent - get entries(entry的复数,条目.项目.记载.记录) getent命令可以用来察看系统的数据库中的相关记录 经常使用getent查看用户账号: 之 ...