题面

传送门:


Solution

写到脑壳疼,我好菜啊

我们来颓柿子吧

\(F_j=\sum_{i<j}\frac{q_i*q_j}{(i-j)^2}-\sum_{i>j}\frac{q_i*q_j}{(i-j)^2}\)

\(q_j\)与\(i\)没有半毛钱关系,提到外面去

\(F_j=q_j*\sum_{i<j}\frac{q_i}{(i-j)^2}-q_j*\sum_{i>j}\frac{q_i}{(i-j)^2}\)

左右同时除以\(q_j\)

\(E_j=\sum_{i=1}^{j-1}\frac{q_i}{(i-j)^2}-\sum_{i=j+1}^{n}\frac{q_i}{(i-j)^2}\)

我们设\(f(i)=q(i),g(i)=\frac{1}{i^2}\),有

\(E_j=\sum_{i=1}^{j-1}f(i)*g(i-j)-\sum_{i=j+1}^{n}f(i)*g(i-j)\)

因为\(g(i)\)是个偶函数,因此有:

\(E_j=\sum_{i=1}^{j-1}f(i)*g(j-i)-\sum_{i=j+1}^{n}f(i)*g(i-j)\)

这时候,我们显然可以发现左边那个式子是个卷积,右边的这样一波化简就也变成了卷积形式:

卷积用FFT快速计算即可

时间复杂度\(O(nlogn)\)


Code

//Luogu P3338 [ZJOI2014]力
//Jan,18th,2019
//FFT加速卷积
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<complex>
using namespace std;
typedef complex <double> cp;
const double PI=acos(-1);
const int M=100000+100;
const int N=8*M;
inline cp omega(int K,int n)
{
return cp(cos(2*PI*K/n),sin(2*PI*K/n));
}
void FFT(cp a[],int n,bool type)
{
static int len=0,num=n-1,t[N];
while(num!=0) len++,num/=2;
for(int i=0,j;i<=n;i++)
{
for(j=0,num=i;j<len;j++)
t[j]=num%2,num/=2;
reverse(t,t+len);
for(j=0,num=0;j<len;j++)
num+=t[j]*(1<<j);
if(i<num) swap(a[i],a[num]);
}
for(int l=2;l<=n;l*=2)
{
int m=l/2;
cp x0=omega(1,l);
if(type==true) x0=conj(x0);
for(int j=0;j<n;j+=l)
{
cp x=cp(1,0);
for(int k=0;k<m;k++,x*=x0)
{
cp temp=x*a[j+k+m];
a[j+k+m]=a[j+k]-temp;
a[j+k]=a[j+k]+temp;
}
}
}
}
int n,m;
double q[N];
cp f[N],g[N],f2[N];
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%lf",&q[i]); for(int i=1;i<=n;i++)
g[i]=(1.0/i/i);
m=1;
while(m<2*n) m*=2;
for(int i=1;i<m;i++)
f[i]=q[i],f2[i]=q[i]; FFT(g,m,false);
FFT(f,m,false);
reverse(f2+1,f2+n+1);
FFT(f2,m,false);
for(int i=0;i<m;i++)
f[i]*=g[i],f2[i]*=g[i];
FFT(f,m,true);
FFT(f2,m,true); for(int i=1;i<=n;i++)
printf("%lf\n",(f[i].real()-f2[n-i+1].real())/m);
return 0;
}

[Luogu P3338] [ZJOI2014]力 (数论 FFT 卷积)的更多相关文章

  1. [Luogu]P3338 [ZJOI2014]力(FFT)

    题目描述 给出\(n\)个数\(q_i\),给出\(F_j\)的定义如下: \(F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{i>j}\fr ...

  2. 【BZOJ】3527: [Zjoi2014]力(fft+卷积)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3527 好好的一道模板题,我自己被自己坑了好久.. 首先题目看错.......什么玩意.......首 ...

  3. 洛谷P3338 [ZJOI2014]力(FFT)

    传送门 题目要求$$E_i=\frac{F_i}{q_i}=\sum_{j=1}^{i-1}\frac{q_j}{(i-j)^2}-\sum_{j=i+1}^n\frac{q_j}{(j-i)^2}$ ...

  4. luogu P3338 [ZJOI2014]力

    传送门 首先化简原式\[F_j=\sum_{i<j}\frac{q_iq_j}{(i-j)^2}-\sum_{i>j}\frac{q_iq_j}{(i-j)^2},E_j=F_j/q_j\ ...

  5. P3338 [ZJOI2014]力(FFT)

    题目 P3338 [ZJOI2014]力 做法 普通卷积形式为:\(c_k=\sum\limits_{i=1}^ka_ib_{k-i}\) 其实一般我们都是用\(i=0\)开始的,但这题比较特殊,忽略 ...

  6. [洛谷P3338] [ZJOI2014]力

    洛谷题目链接:P3338 [ZJOI2014]力 题目描述 给出n个数qi,给出Fj的定义如下: \[F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_ ...

  7. 洛谷 P3338 [ZJOI2014]力 解题报告

    P3338 [ZJOI2014]力 题目描述 给出n个数qi,给出Fj的定义如下: \(F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{i>j ...

  8. 【BZOJ 3527】 3527: [Zjoi2014]力 (FFT)

    3527: [Zjoi2014]力 Time Limit: 30 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 2003  Solved: 11 ...

  9. P3338 [ZJOI2014]力 /// FFT 公式转化翻转

    题目大意: https://www.luogu.org/problemnew/show/P3338 题解 #include <bits/stdc++.h> #define N 300005 ...

随机推荐

  1. django 的跨域配置

    1.跨域原理 #1. 首先浏览器安全策略限制js ajax跨域访问服务器 #2. 如果服务器返回的头部信息中有当前域: // 允许 http://localhost:8080 这个网站打开的页面中的j ...

  2. djano jwt 的使用

    1.5 JWT:使用djangorestframework-jwt模块进行用户身份验证    安装: pip install djangorestframework-jwt    添加应用:pytho ...

  3. iNeuOS工业互联平台,在“智慧”楼宇、园区等领域的应用

    目       录 1.      概述... 1 2.      平台演示... 2 3.      硬件网关... 2 4.      平台接入硬件网关... 4 1.      概述 " ...

  4. 安卓app功能或自动化测试覆盖率统计(不用instrumentation启动app)

    一文带你揭秘如何采取非instrumentation启动app,打造实时统计覆盖率,一键触发覆盖率测试报告. 在上篇文章,一文带你解决Android app手工测试或者自动化测试覆盖率统计(撸代码版) ...

  5. 手把手教你AspNetCore WebApi:入门

    需求 前几天,马老板给小明和小红一个"待办事项"网站,小明负责后端,小红负责前端,并要求网站可以同时在 Windows.和 Linux 上运行. 小明整理了一下"待办事项 ...

  6. c++ 中预编译头文件名 pch.h

    转载:https://www.it-swarm.asia/zh/c++/%e6%88%91%e5%8f%af%e4%bb%a5%e4%bd%bf%e7%94%a8includepchh%e2%80%9 ...

  7. Splay浅谈

    Splay是众多平衡树之一,它的功能十分强大,但常数极大.在LCT和许多数据结构中都能用到. Splay的核心操作,就是rotate.为了使树不是一条链,而是平衡的,我们需要旋转来维护形态.理论很简单 ...

  8. 万万没想到!ModelArts与AppCube组CP了

    摘要:嘘,华为云内部都不知道的秘密玩法,我悄悄告诉您! 双"魔"合璧庆双节 ↑开局一张图,故事全靠编 华为云的一站式开发平台ModelArts和应用魔方AppCube居然能玩到一起 ...

  9. 字节码暴力破解censum(老版本)

    声明 事先声明,本文仅提供破解方法以供个人及读者们学习Java字节码,不提倡破解程序. 本文是个人学习掘金小册张师傅的<JVM字节码从入门到精通>后,作为一个实践的记录,并无恶意. 关于c ...

  10. protoc-c 安装记录

    记录下 protobuf-c 安装过程中的问题. 1) 安装的时候没细看依赖. --  protobuf-c requires a C compiler, a C++ compiler, protob ...