核心库

1. NumPy (提交数: 15980, 贡献者数: 522)

当开始处理Python中的科学任务,Python的SciPy Stack肯定可以提供帮助,它是专门为Python中科学计算而设计的软件集合(不要混淆SciPy库,它是SciPy Stack的一部分,和SciPy Stack的社区)这样我们开始来看一下吧。然而,SciPy Stack相当庞大,其中有十几个库,我们把焦点放在核心包上(特别是最重要的)。

关于建立科学计算栈,最基本的包是Numpy(全称为Numerical Python)。它为Python中的n维数组和矩阵的操作提供了大量有用的功能。该库提供了NumPy数组类型的数学运算向量化,可以改善性能,从而加快执行速度。

2. SciPy (提交数: 17213, 贡献者数: 489)

SciPy是一个工程和科学软件库。再次提醒,你需要理解SciPy Stack和SciPy库之间的区别。

SciPy包含线性代数,优化,集成和统计的模块。SciPy库的主要功能是建立在NumPy上,从而它的数组大量的使用了NumPy的。它通过其特定子模块提供有效的数值例程,并作为数字积分、优化和其他例程。SciPy的所有子模块中的功能都有详细的说明 ——又是一个SciPy非常有帮助的点。

3. Pandas (提交数: 15089, 贡献者数:762)

Pandas是一个Python包,旨在通过“标记”和“关系”数据进行工作,简单直观。Pandas是数据整理的完美工具。它设计用于快速简单的数据操作,聚合和可视化。

可视化

4.Matplotlib (提交数: 21754, 贡献者数: 588)

又一个SciPy Stack核心软件包以及 Python库,Matplotlib为轻松生成简单而强大的可视化而量身定制。它是一个顶尖的软件(在NumPy,SciPy和Pandas的帮助下),它使Python成为像MatLab或Mathematica这样的科学工具的竞争对手。

然而,这个库是低层级的,这意味着你需要编写更多的代码才能达到高级的可视化效果,而且通常会比使用更多的高级工具付出更多的努力,但总体上这些努力是值得的。

5. Seaborn (提交数: 1699, 贡献者数: 71)

Seaborn主要关注统计模型的可视化;这种可视化包括热图,这些热图(heat map)总结数据但仍描绘整体分布。Seaborn基于Matplotlib,并高度依赖于此。

6. Bokeh (提交数: 15724, 贡献者数: 223)

另一个很不错的可视化库是Bokeh,它针对交互式可视化。与以前的库相比,它独立于Matplotlib。正如我们提到的,Bokeh的主要焦点是交互性,它通过现代浏览器以数据驱动文档(d3.js)的风格呈现。

7. Plotly (提交数: 2486, 贡献者数: 33)

最后,关于Plotly的话。它是一个基于Web用于构建可视化的工具箱,提供API给一些编程语言(Python在内)。在plot.ly网站上有一些强大的、上手即用的图形。为了使用Plotly,你将需要设置API密钥。图形将在服务器端处理,并发布到互联网,但有一种方法可以避免。

机器学习

8. SciKit-Learn (提交数:21793, 贡献者数:842)

Scikits是Scikits Stack额外的软件包,专为像图像处理和机器学习辅助等特定功能而设计。对于机器学习辅助,scikit-learn是所有软件包里最突出的一个。它建立在SciPy之上,并大量利用它的数学运算。

scikit-learn给常见的机器学习算法公开了一个简洁、一致的接口,可简单地将机器学习带入生产系统中。该库中集成了有质量的代码和良好的文档、简单易用并且十分高效,是使用Python进行机器学习的实际行业标准。

深度学习—— Keras / TensorFlow / Theano

在深度学习方面,Python中最着名和最便的库之一是Keras,它可以在TensorFlow或Theano框架上运行。让我们来看一下它们的一些细节。

9.Theano. (提交数:25870, 贡献者数:300)

首先让我们谈谈Theano。

Theano是一个Python软件包,它定义了与NumPy类似的多维数组,以及数学运算和表达式。此库是被编译的,可实现在所有架构上的高效运行。最初由蒙特利尔大学机器学习组开发,它主要用于满足机器学习的需求。

值得注意的是,Theano紧密结合了NumPy在低层次上的运算 。另外,该库还优化了GPU和CPU的使用,使数据密集型的计算平台性能更佳。

效率和稳定性微调保证了即使在数值很小的情况下,仍有更精确的结果,例如,即使只给出x的最小值,log(1 + x)仍能计算出合理的结果。

10. TensorFlow. (提交数: 16785,贡献者数: 795)

TensorFlow来自Google的开发人员,它是数据流图计算的开源库,为机器学习不断打磨。它旨在满足谷歌对训练神经网络的高需求,并且是基于神经网络的机器学习系统DistBelief的继任者。然而,TensorFlow并不限制于谷歌的科学应用范围 – 它可以通用于多种多样的现实应用中。

TensorFlow的关键特征是它的多层节点系统,可以在大型数据集上快速训练神经网络。这为谷歌的语音识别和图像对象识别提供了支持。

11. Keras. (提交数: 3519,贡献者数: 428)

最后我们来看看Keras。它是一个用Python编写的开源的库,用于在高层的接口上构建神经网络。它简单易懂,具有高级可扩展性。Keras使用Theano或TensorFlow作为后端,但微软现在正努力整合CNTK(微软的认知工具包)作为新的后端。

设计中的简约方法旨在通过建立紧凑型系统进行快速、简便的实验。

Keras真的容易上手,并在持续完善它的快速原型能力。它完全用Python编写,可被高度模块化和扩展。尽管它以易上手、简单和以高层次为导向,但是Keras足够有深度并且足够强大,去支持复杂的模型。

自然语言处理

12. NLTK (提交数: 12449,贡献者数: 196)

这个库的名称“Natural Language Toolkit”,代表自然语言工具包,顾名思义,它用于符号学和统计学自然语言处理(NLP) 的常见任务。 NLTK旨在促进NLP及相关领域(语言学,认知科学人工智能等)的教学和研究,目前受到重点关注。

NLTK的功能允许很多操作,例如文本标记,分类和标记,实体名称识别,建立语料库,可以显示语言内部和各句子间的依赖性、词根、语义推理等。所有的构建模块都可以为不同的任务构建复杂的研究系统,例如情绪分析,自动总结。

13. Gensim (提交数: 2878,贡献者数: 179)

它是一个用于Python的开源库,为有向量空间模型和主题模型的工作提供了使用工具。这个库是为了高效处理大量文本而设计的,所以不仅可以进行内存处理,还可以通过广泛使用NumPy数据结构和SciPy操作来获得更高的效率。Gensim高效也易于使用。

Gensim旨在与原始和非结构化的数字文本一起使用。 它实现了诸如hierarchical Dirichlet processes(HDP),潜在语义分析(LSA)和潜在Dirichlet分配(LDA)之类的算法,以及tf-idf,随机预测,word2vec和document2vec,便于检查一组文档中有重复模式的文本 (通常称为语料库)。所有的算法均是无监督的,意味着不需要任何参数,唯一的输入只有语料库。

数据挖掘,统计学

14. Scrapy (提交数: 6325,贡献者数: 243)

Scrapy库是用于从网络结构化检索数据(如联系人信息或URL),可以用来设计crawling程序(也称为蜘蛛bots)。

它是开源的,使用用Python编写的。最开始只是如它的名字暗示的一样,只用来做scraping,但是它现在已经在完整的框架中发展,能够从API采集数据并作为通用的crawlers了。

该库在界面设计中标榜着“不要重复自己”  它推荐用户们编写泛化得到、可被重复使用的通用代码,从而构建和扩展大型的crawlers。

Scrapy的架构围绕着Spider class构建,这其中包含了crawler追从的一套指令。

15. Statsmodels (提交数: 8960,贡献者数: 119)

你可能从名字就猜出大概了,statsmodels使用户能够通过使用各种统计模型的估算方法进行数据挖掘,并执行统计判断和分析。

许多有用的特征是可被描述的,并通过使用线性回归模型,广义线性模型,离散选择模型,鲁棒线性模型,时间序列分析模型,各种估计方法得出统计结果。

这个库还提供了广泛的标定功能,专门用于大数据统计中的性能优化工作。

总结

许多数据科学家和工程师认为这些库是顶级的,并值得关注,或者需要或多或少了解它们。

最受欢迎的 15 大 Python 库(2017)的更多相关文章

  1. 探讨2018年最受欢迎的15顶级Python库!

    近日,数据科学网站 KDnuggets 评选出了顶级 Python 库 Top15,领域横跨数据科学.数据可视化.深度学习和机器学习.如果本文有哪些遗漏,你可以在评论区补充. 图 1:根据 GitHu ...

  2. 数据处理一条龙!这15个Python库不可不知

    如果你是一名数据科学家或数据分析师,或者只是对这一行业感兴趣,那下文中这些广受欢迎且非常实用的Python库你一定得知道. 从数据收集.清理转化,到数据可视化.图像识别和网页相关,这15个Python ...

  3. 最受欢迎的15个Python开源框架

    GitHub中15个最受欢迎的Python开源框架.这些框架包括事件I/O,OLAP,Web开发,高性能网络通信,测试,爬虫等. 1.Django: Python Web应用开发框架 Django 应 ...

  4. 10 大 python 库

    TensorFlow Scikit-Learn Numpy Keras PyTorch LightGBM Eli5 SciPy Theano Pandas 简介 python 是最流行和使用最广泛的编 ...

  5. 2017年排名前15的数据科学python库

    2017年排名前15的数据科学python库 2017-05-22 Python程序员 Python程序员 Python程序员 微信号 pythonbuluo 功能介绍 最专业的Python社区,有每 ...

  6. 20个必不可少的Python库也是基本的第三方库

    个属于我常用工具的Python库,我相信你看完之后也会觉得离不开它们.他们是: Requests.Kenneth Reitz写的最富盛名的http库.每个Python程序员都应该有它. Scrapy. ...

  7. Python 库大全

    作者:Lingfeng Ai链接:http://www.zhihu.com/question/24590883/answer/92420471来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非 ...

  8. 哪些 Python 库让你相见恨晚?【转】

    原文链接:https://www.zhihu.com/question/24590883/answer/92420471 原文链接:Python 资源大全 ---------------- 这又是一个 ...

  9. Python库,让你相见恨晚的第三方库

    环境管理 管理 Python 版本和环境的工具 p – 非常简单的交互式 python 版本管理工具.pyenv – 简单的 Python 版本管理工具.Vex – 可以在虚拟环境中执行命令.virt ...

随机推荐

  1. C# 字段初始值无法引用非静态字段、方法或属性( 类内部变量初始化)

    问题:字段初始值设定项无法引用非静态字段.方法或属性的问题 在类中  变量赋值其他变量报错? public class TestClass{  public TestClass()  {  }  pu ...

  2. bzoj3526[Poi2014]Card*

    bzoj3526[Poi2014]Card 题意: 有n张卡片在桌上一字排开,每张卡片上有两个数,第i张卡片上,正面的数为a[i],反面的数为b[i].有m个操作,第i个操作会交换c[i]和d[i]两 ...

  3. 用maven打包java项目的pom文件配置

    <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/20 ...

  4. web自动化测试实战之生成测试报告

    同志们,老铁们,继上篇文章 web自动化测试实战之批量执行测试用例 之后我们接着继续往下走,有人说我们运行了所有测试用例,控制台输入的结果,如果很多测试用例那也不能够清晰快速的知道多少用例通过率以及错 ...

  5. T133316 57级返校测试重测-T4-字符串的修改

    大致题意: 有一个A字符串和一个B字符串, 操作将A或A的一个后缀修改为B, 求最少的操作数. 有三个操作为: 删除: 删除掉 A 中的某一个字符. 添加: 将某一个字符添加到 A 中任意位置. 替换 ...

  6. vue : 本地调试跨域问题的解决办法:proxyTable

    本来我是不想写的,但为了加深印象还是写一写吧. ./config/index.js module.exports = { dev: { // Paths assetsSubDirectory: 'st ...

  7. 搭建高可用kubernetes集群(keepalived+haproxy)

    序 由于单master节点的kubernetes集群,存在master节点异常之后无法继续使用的缺陷.本文参考网管流程搭建一套多master节点负载均衡的kubernetes集群.官网给出了两种拓扑结 ...

  8. 搞定 CompletableFuture,并发异步编程和编写串行程序还有什么区别?你们要的多图长文

    你有一个思想,我有一个思想,我们交换后,一个人就有两个思想 If you can NOT explain it simply, you do NOT understand it well enough ...

  9. 从零开始学Electron笔记(七)

    在之前的文章我们介绍了一下Electron中的对话框 Dialog和消息通知 Notification,接下来我们继续说一下Electron中的系统快捷键及应用打包. 全局快捷键模块就是 global ...

  10. 一些matlb会用到的函数

    matlab这种软件功能很强大,但是都不是常常会用到,尤其是像在学生中.每次用的时候总会把一些基本的函数忘记,还的去网上查.我之前在使用的时候也总结过,可惜在一次数据丢失中全没了(︶︹︺). 从现在开 ...