1. 前言

Linux内核源码分析之setup_arch (二) 中介绍了当前启动阶段的内存分配函数memblock_alloc,该内存分配函数在本篇将要介绍paging_init中用于页表和内存的分配,paging_init函数大致流程如下图所示。

2. paging_init

2.1 build_mem_type_table

该函数根据具体的CPU架构对静态定义的mem_types数组中定义的属性进行调整。

2.2 prepare_page_table

该函数的作用是把页目录项清零,源码大致如下。首先是把虚拟地址范围[0, MODULES_VADDR]的页目录项清零,如果内核是模块区域以XIP方式运行的,则跳过内核部分的页目录,然后继续对区域[addr,PAGE_OFFSET]的页目录项清零,此时用户空间的页目录项已经全部清零;最后,把除了第一块内存条之外的内核空间[__phys_to_virt(end), VMALLOC_START]对应的页目录项清零。

/* arch/arm/mm/mmu.c */
static inline void prepare_page_table(void)
{
unsigned long addr;
phys_addr_t end;
/* <--(1)--> */
for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
pmd_clear(pmd_off_k(addr)); #ifdef CONFIG_XIP_KERNEL
addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
#endif
/* <--(2)--> */
for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
pmd_clear(pmd_off_k(addr)); end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
if (end >= lowmem_limit)
end = lowmem_limit;
/* <--(3)--> */
for (addr = __phys_to_virt(end);
addr < VMALLOC_START; addr += PMD_SIZE)
pmd_clear(pmd_off_k(addr));
}

2.3 map_lowmem

该函数将物理内存地址小于lowmem_limit的内存映射到内核空间,实际的内存映射工作在create_mapping中完成。

/* arch/arm/mm/mmu.c */
static void __init map_lowmem(void)
{
...
for_each_memblock(memory, reg) {
start = reg->base;
end = start + reg->size; if (end > lowmem_limit)
end = lowmem_limit;
if (start >= end)
break; map.pfn = __phys_to_pfn(start);
map.virtual = __phys_to_virt(start);
map.length = end - start;
map.type = MT_MEMORY; create_mapping(&map, false);
}
}

create_mapping函数的大致流程如下图所示,这里需要提一下,linux内核使用的是四级页表,即PGD、PUD、PMD、PTE;而ARM32使用的是二级页表,即PMD、PTE。同时由于内存管理是以页为单位进行的,如果按照ARM硬件MMU的分页机制,一个PMD对应的PTE并不能完全占用完整个页,为了避免内存浪费,会在软件层面上将两个PMD对应的PTE放在一个页内,具体细节可以参考文件arch/arm/include/asm/pgtable-2level.h中的注释部分。最终会调用alloc_init_pte函数对指定范围的内存区域进行映射,其中的early_pte_alloc函数最终也会去调用 Linux内核源码分析之setup_arch (二) 中介绍的memblock_alloc函数来分配内存,最后将PTE所在页写入到PMD中即可完成映射。

/* arch/arm/mm/mmu.c */
static void __init alloc_init_pte(...)
{
pte_t *start_pte = early_pte_alloc(pmd);
pte_t *pte = start_pte + pte_index(addr); do {
set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
pfn++;
} while (pte++, addr += PAGE_SIZE, addr != end);
early_pte_install(pmd, start_pte, type->prot_l1);
}

2.4 devicemaps_init

该函数大致流程如下图所示,首先调用early_alloc分配一个页,然后调用early_trap_init将向量表复制到新的页内,最后调用create_mapping将这个页映射到0xffff0000处,如果mdesc->map_io存在,还会对设备相关的IO进行映射。

2.5 kmap_init

这个函数非常简单,把大小为2MB的区间[PKMAP_BASE,PAGE_OFFSET]映射到内核空间。

/* arch/arm/mm/mmu.c */
static void __init kmap_init(void)
{
#ifdef CONFIG_HIGHMEM
pkmap_page_table = early_pte_alloc_and_install(pmd_off_k(PKMAP_BASE),
PKMAP_BASE, _PAGE_KERNEL_TABLE);
#endif
}

3. 总结

本文主要介绍了内核启动阶段页表初始化部分的内容,其中,build_mem_type_table负责根据不同CPU架构对mem_types进行调整,prepare_page_table负责将待初始化区域的页目录项清零,然后通过map_lowmem建立低端内存区域的页表映射,最后调用devicemaps_init建立对向量表和设备IO的映射。至此,除了bootmem_init函数没有分析之外,paging_init基本算是分析完了,bootmem_init的分析将在下一篇中给出。

Linux内核源码分析之setup_arch (三)的更多相关文章

  1. Linux内核源码分析之setup_arch (四)

    前言 Linux内核源码分析之setup_arch (三) 基本上把setup_arch主要的函数都分析了,由于距离上一篇时间比较久了,所以这里重新贴一下大致的流程图,本文主要分析的是bootmem_ ...

  2. Linux内核源码分析之setup_arch (二)

    1. 概述 接着上一篇<Linux内核源码分析之setup_arch (一)>继续分析,本文首先分析arm_memblock_init函数,然后分析内核启动阶段的是如何进行内存管理的. 2 ...

  3. Linux内核源码分析--内核启动之(4)Image内核启动(setup_arch函数)(Linux-3.0 ARMv7)【转】

    原文地址:Linux内核源码分析--内核启动之(4)Image内核启动(setup_arch函数)(Linux-3.0 ARMv7) 作者:tekkamanninja 转自:http://blog.c ...

  4. Linux内核源码分析--内核启动之(3)Image内核启动(C语言部分)(Linux-3.0 ARMv7)

    http://blog.chinaunix.net/uid-20543672-id-3157283.html Linux内核源码分析--内核启动之(3)Image内核启动(C语言部分)(Linux-3 ...

  5. Linux内核源码分析 day01——内存寻址

    前言 Linux内核源码分析 Antz系统编写已经开始了内核部分了,在编写时同时也参考学习一点Linux内核知识. 自制Antz操作系统 一个自制的操作系统,Antz .半图形化半命令式系统,同时嵌入 ...

  6. Linux内核源码分析方法_转

    Linux内核源码分析方法 转自:http://www.cnblogs.com/fanzhidongyzby/archive/2013/03/20/2970624.html 一.内核源码之我见 Lin ...

  7. Linux内核源码分析--内核启动之(6)Image内核启动(do_basic_setup函数)(Linux-3.0 ARMv7)【转】

    原文地址:Linux内核源码分析--内核启动之(6)Image内核启动(do_basic_setup函数)(Linux-3.0 ARMv7) 作者:tekkamanninja 转自:http://bl ...

  8. Linux内核源码分析方法

    一.内核源码之我见 Linux内核代码的庞大令不少人“望而生畏”,也正因为如此,使得人们对Linux的了解仅处于泛泛的层次.如果想透析Linux,深入操作系统的本质,阅读内核源码是最有效的途径.我们都 ...

  9. linux中断源码分析 - 中断发生(三)

    本文为原创,转载请注明:http://www.cnblogs.com/tolimit/ 回顾 上篇文章linux中断源码分析 - 初始化(二)已经描述了中断描述符表和中断描述符数组的初始化,由于在初始 ...

随机推荐

  1. Idea 查找加替换 功能

    本页查找 快捷键:ctr+F 鼠标框选 所需内容 再加快捷键 查找更加方便 替换功能

  2. 从代码角度理解NNLM(A Neural Probabilistic Language Model)

    其框架结构如下所示: 可分为四 个部分: 词嵌入部分 输入 隐含层 输出层 我们要明确任务是通过一个文本序列(分词后的序列)去预测下一个字出现的概率,tensorflow代码如下: 参考:https: ...

  3. (八)函数调用为何会发生“Stack Overflow”

    一.一次函数调用分析 c代码: // function_example.c #include <stdio.h> int static add(int a, int b) { return ...

  4. Java面试专题-多线程篇(2)- 锁和线程池

  5. moviepy音视频开发:音频合成类CompositeAudioClip介绍

    ☞ ░ 前往老猿Python博文目录 ░ CompositeAudioClip是AudioClip的直接子类,用于将几个音频剪辑合成为一个音频剪辑.CompositeAudioClip类只有一个构造方 ...

  6. 第7.22节 Python中使用super调用父类的方法

    第7.22节 Python中使用super调用父类的方法 前面章节很多地方都引入了super方法,这个方法就是访问超类这个类对象的.由于super方法的特殊性,本节单独谈一谈super方法. 一.su ...

  7. linux进程管理(linux命令安装、进程生命周期、进程状态)

    1 linux下如何杀掉进程 1)找到包名所占用的端口: ps aux | grep cbs_portal-1.0.1.jar(包名) 2)杀掉进程: kill 10942(端口号) PS: //-- ...

  8. java中的反射(一)

    在之前学java基础时学习过反射,但在因为没有相应的应用场景,所以也是一知半解.最近在学spring的时候发现反射是其中很重要的一部分,所以回顾一下,并看看它在spring中的应用. 目录 一.反射 ...

  9. 深入分析 Java Lock 同步锁

    前言 Java 的锁实现,有 Synchronized 和 Lock.上一篇文章深入分析了 Synchronized 的实现原理:由Java 15废弃偏向锁,谈谈Java Synchronized 的 ...

  10. 【学习笔记】动态 dp 入门简易教程

    序列 dp 引入:最大子段和 给定一个数列 \(a_1, a_2, \cdots, a_n\)(可能为负),求 \(\max\limits_{1\le l\le r\le n}\left\{\sum_ ...