题意:

从左下角移动到右上角。每次只能向上或者向右移动一格。问移动的轨迹形成的右半边图形有多少种

题解:

注意,这个图形就根本不会重复,那就是n*m的图形,向上移动n次,向右移动m次。

从左下角移动到右上角的过程就是n个“上”,m个“右”的组合的形式,有多少种移动方式,那就是 C((n+m),n)或者C((n+m),m) C((n+m),n)意思就是从n+m个位置上挑选出来n个位置,这n个位置要向上走,那么剩下m个位置肯定是向右走咯

另外 无符号整型的输入输出用“%u” 无符号长整型的输入输出用“%llu”

本题的N=(n+m),M=min(n,m)

将N,M带入公式,你会发现N!与(N-M)!(N-M是max(n,m))约分后剩下的是N*(N-1)*(N-2)*...(一共m个元素)

代码:

 1 #include<stdio.h>
2 #include<string.h>
3 #include<iostream>
4 #include<algorithm>
5 #include<math.h>
6 #include<queue>
7 using namespace std;
8 typedef unsigned ull;
9 ull result(ull n,ull m) //求组合C(n,m)(n>m)
10 {
11 ull temp;
12 double ans=1.0;
13 temp=min(n,m);
14 n=n+m;
15 m=temp;
16 while(m>0)
17 {
18 ans=ans*((double)(n--)/(double)(m--));
19 }
20 ans+=0.5;
21 return (ull)ans;
22 }
23 int main()
24 {
25 unsigned m,n;
26 while(true)
27 {
28 scanf("%u%u",&n,&m);
29 if(!m && !n)//承认这题的猥琐吧!竟然有其中一边为0的矩阵,一定要&&,用||会WA
30 break;
31 printf("%u\n",result(n,m));
32 //cout<<<<endl;
33 }
34 return 0;
35 }

Paths on a Grid POJ - 1942 排列组合的更多相关文章

  1. Paths on a Grid(poj 1942)

    给定一个矩形网格的长m和高n,其中m和n都是unsigned int32类型,一格代表一个单位,就是一步,求从左下角到右上角有多少种走法,每步只能向上或者向右走. //注意循环的时候,要循环小的数,否 ...

  2. Paths on a Grid POJ - 1942 组合数学 (组合数的快速计算)

    题意:格路问题 没什么难度 难点在于如何快速计算相对较大的组合数 思路:运用手写计算组合数的方式进行计算  如c(8,3) 如果手算就是   8*7*6/(3*2*1)这样可以很快得解出 计算代码为: ...

  3. [ACM] POJ 1942 Paths on a Grid (组合)

    Paths on a Grid Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 21297   Accepted: 5212 ...

  4. POJ 1942:Paths on a Grid

    Paths on a Grid Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 22918   Accepted: 5651 ...

  5. [Codeforces 1228E]Another Filling the Grid (排列组合+容斥原理)

    [Codeforces 1228E]Another Filling the Grid (排列组合+容斥原理) 题面 一个\(n \times n\)的格子,每个格子里可以填\([1,k]\)内的整数. ...

  6. POJ 3421 X-factor Chains (因式分解+排列组合)

    题意:一条整数链,要求相邻两数前一个整除后一个.给出链尾的数,求链的最大长度以及满足最大长度的不同链的数量. 类型:因式分解+排列组合 算法:因式分解的素因子个数即为链长,链中后一个数等于前一个数乘以 ...

  7. [leetcode] 题型整理之排列组合

    一般用dfs来做 最简单的一种: 17. Letter Combinations of a Phone Number Given a digit string, return all possible ...

  8. 学习sql中的排列组合,在园子里搜着看于是。。。

    学习sql中的排列组合,在园子里搜着看,看到篇文章,于是自己(新手)用了最最原始的sql去写出来: --需求----B, C, F, M and S住在一座房子的不同楼层.--B 不住顶层.C 不住底 ...

  9. .NET平台开源项目速览(11)KwCombinatorics排列组合使用案例(1)

    今年上半年,我在KwCombinatorics系列文章中,重点介绍了KwCombinatorics组件的使用情况,其实这个组件我5年前就开始用了,非常方便,麻雀虽小五脏俱全.所以一直非常喜欢,才写了几 ...

随机推荐

  1. HAProxy-1.8.20 根据后缀名转发到后端服务器

    global maxconn 100000 chroot /data/soft/haproxy stats socket /var/lib/haproxy/haproxy.sock mode 600 ...

  2. 【Vue】Vue开发环境搭建

    Vue前置学习环境 文章目录 Vue前置学习环境 IDE Node.js 调试环境 工程环境 小结 IDE WebStorm 官网下载:https://www.jetbrains.com/websto ...

  3. 【Linux】zabbix4.0服务器搭建,agent搭建,及邮件使用方法

    zabbix默认的 服务端监听端口为10051,而被监控端即Zabbix--agents代理程序监控10050端口. 更新yum源: yum clean all yum makecache 需要配置网 ...

  4. 【葵花宝典】一天掌握Docker

    第1章Docker 概述 1-1 Docker是什么 没有虚拟化技术的原始年代 我们仔细想想,在没有计算虚拟化技术的"远古"年代,如果我们要部署一个应用程序(Application ...

  5. 关于postgresql中numeric和decimal的精度和标度问题

    精度即数的有效数字个数 2.5的有效数字个数是2,但是053.2的有效数字个数是3 标度是小数点的位数 例如numeric(2,1),即这个数必须是两位,并且小数后面最多有一位,多出来的小数会被四舍五 ...

  6. spring boot项目问题汇总

    spring遇到的问题汇总 有关日志的打印和日志如何使用 在实际项目中,我们的程序都是运行在linux上,有错误时也不能在本地的控制台上直观看到,所有合理打印日志对于程序员迅速定位到错误. 打印日志时 ...

  7. Podinfo,迷你的 Go 微服务模板

    ​项目介绍 Podinfo 是一个用 Go 制作的小型 web 应用程序,它展示了在 Kubernetes 中运行微服务的最佳实践. 它已实现的技术指标(截选自官方 README.md ): 里面每一 ...

  8. 【Soul源码探秘】插件链实现

    引言 插件是 Soul 的灵魂. Soul 使用了插件化设计思想,实现了插件的热插拔,且极易扩展.内置丰富的插件支持,鉴权,限流,熔断,防火墙等等. Soul 是如何实现插件化设计的呢? 一切还得从插 ...

  9. 在Centos7上安装Python+Selenium+Chrome+Chromedriver

    1.下载Chrome 上一篇文章已经演示过了Python+Selenium+Firefox+Geckodriver安装步骤并通过自动化脚本打开百度 因此当前只需要安装Chrome和Chromedriv ...

  10. 洛谷P2573

    Description \(n\) 个点,有各自的高度. \(m\) 条道路,有各自的长度,每条可连接两个点. 规定只能从高点走向低点,可以回到原来的某个位置走不同的道路. 求在行走道路尽量短的情况下 ...