Rip Van Winkle was fed up with everything except programming. One day he found a problem whichrequired to perform three types of update operations (A, B, C), and one query operation S over an arraydata[]. Initially all elements of data are equal to 0. Though
Rip Van Winkle is going to sleep for 20years, and his code is also super slow, you need to perform the same update operations and output theresult for the query operation S in an efficient way.

long long data[250001];

void A( int st, int nd ) {

for( int i = st; i \le nd; i++ ) data[i] = data[i] + (i - st + 1);

}

void B( int st, int nd ) {

for( int i = st; i \le nd; i++ ) data[i] = data[i] + (nd - i + 1);

}

void C( int st, int nd, int x ) {

for( int i = st; i \le nd; i++ ) data[i] = x;

}

long long S( int st, int nd ) {

long long res = 0;

for( int i = st; i \le nd; i++ ) res += data[i];

return res;

}

Input

The first line of input will contain T (≤ 4 ∗ 105) denoting the number of operations. Each of the nextT lines starts with a character (‘A’, ‘B’, ‘C’ or ‘S’), which indicates the type of operation. Character ‘A’,‘B’ or ‘S’ will be followed by two integers,
st and nd in the same line. Character ‘C’ is followed by threeintegers, st, nd and x. It’s assumed that, 1 ≤ st ≤ nd ≤ 250000 and −105 ≤ x ≤ 105. The meaningsof these integers are explained by the code of Rip Van Winkle.

Output

For each line starting with the character ‘S’, print S(st, nd) as defined in the code.

Sample Input

7

A 1 4

B 2 3

S 1 3

C 3 4 -2

S 2 4

B 1 3

S 2 4

Sample Output

9

0

3

这题是区间更新,这题比较麻烦,做了很长时间。先用线段树维护l,r,add1(线段左端点加的值),add2(线段右端点加的值),step(区间的公差,右边减去左边的),sum(区间总和),flag(判断区间是否数字相同),value(区间数字都相同时的数值大小).我的思路是每一次更新,都把这一段的sum值直接表示出来,如果更新的这条线段小于当前线段,那么先不更新sum值,而是b[th].sum=b[lth].sum+b[rth].sum;

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<bitset>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef long double ldb;
#define lth th<<1
#define rth th<<1|1
#define inf 99999999
#define pi acos(-1.0)
#define MOD 100000007
#define maxn 250050
struct node{
int l,r;
ll value,flag; //flag表示这段是不是值都是相同的,value是这段的值
ll add1,step,add2; //add1表示左端点加的值,add2表示右端点,step表示这段的公差
ll sum;
}b[4*maxn]; void build(int l,int r,int th)
{
int mid;
b[th].l=l;b[th].r=r;
b[th].value=0;b[th].flag=1;
b[th].add1=b[th].step=b[th].add2=0;
b[th].sum=0;
if(l==r)return;
mid=(l+r)/2;
build(l,mid,lth);
build(mid+1,r,rth);
}
void pushdown(int th)
{
int mid;
mid=(b[th].l+b[th].r)/2;
if(b[th].flag){
b[th].flag=0;
b[lth].flag=1;
b[lth].value=b[th].value;
b[lth].add1=b[lth].add2=b[lth].step=0;
b[lth].sum=(b[lth].r-b[lth].l+1)*b[th].value; b[rth].flag=1;
b[rth].value=b[th].value;
b[rth].add1=b[rth].add2=b[rth].step=0;
b[rth].sum=(b[rth].r-b[rth].l+1)*b[th].value;
} ll add1,add2;
add1=b[th].add1; add2=b[th].add1+(mid-b[th].l)*b[th].step;
b[lth].add1+=add1;
b[lth].add2+=add2;
b[lth].step+=b[th].step;
b[lth].sum+=(add1+add2)*(b[lth].r-b[lth].l+1)/2; ll add3,add4;
add3=add2+b[th].step;add4=add3+(b[th].r-(mid+1))*b[th].step;
b[rth].add1+=add3;
b[rth].add2+=add4;
b[rth].step+=b[th].step;
b[rth].sum+=(add3+add4)*(b[rth].r-b[rth].l+1)/2; b[th].add1=b[th].add2=b[th].step=0;
}
void pushup(int th)
{
b[th].sum=b[lth].sum+b[rth].sum;
} void update(int l,int r,ll add,int f,int th)
{
int mid;
if(b[th].l==l && b[th].r==r){
if(f==1){
b[th].add1+=add;
b[th].add2+=add+b[th].r-b[th].l;
b[th].step+=1;
b[th].sum+=(add+add+b[th].r-b[th].l)*(b[th].r-b[th].l+1)/2;
return;
}
else if(f==2){
b[th].add1+=add+b[th].r-b[th].l;
b[th].add2+=add;
b[th].step-=1;
b[th].sum+=(add+add+b[th].r-b[th].l)*(b[th].r-b[th].l+1)/2;
return;
}
else if(f==3){
b[th].flag=1;
b[th].value=add;
b[th].sum=b[th].value*(b[th].r-b[th].l+1);
b[th].add1=b[th].add2=b[th].step=0;
return;
}
}
pushdown(th);
mid=(b[th].l+b[th].r)/2;
if(r<=mid)update(l,r,add,f,lth);
else if(l>mid)update(l,r,add,f,rth);
else{
if(f==1){
update(l,mid,add,f,lth);
update(mid+1,r,add+(mid+1-l),f,rth);
}
else if(f==2){
update(l,mid,add+(r-mid),f,lth);
update(mid+1,r,add,f,rth);
}
else if(f==3){
update(l,mid,add,f,lth);
update(mid+1,r,add,f,rth);
}
}
pushup(th);
}
ll question(int l,int r,int th)
{
int mid;
if(b[th].l==l && b[th].r==r){
return b[th].sum;
}
pushdown(th);
mid=(b[th].l+b[th].r)/2;
if(r<=mid)return question(l,r,lth);
else if(l>mid)return question(l,r,rth);
else{
return question(l,mid,lth)+question(mid+1,r,rth);
}
}
int main()
{
int m,i,j,T,c,d;
ll n,num;
char s[10];
while(scanf("%lld",&n)!=EOF)
{
build(1,250010,1);
for(i=1;i<=n;i++){
scanf("%s%d%d",s,&c,&d);
if(s[0]=='A'){
update(c,d,1,1,1);
}
else if(s[0]=='B'){
update(c,d,1,2,1);
}
else if(s[0]=='C'){
scanf("%lld",&num);
update(c,d,num,3,1);
}
else if(s[0]=='S'){
printf("%lld\n",question(c,d,1) );
}
}
}
return 0;
}

Uva 12436 Rip Van Winkle's Code的更多相关文章

  1. UVA 12436 - Rip Van Winkle&#39;s Code(线段树)

    UVA 12436 - Rip Van Winkle's Code option=com_onlinejudge&Itemid=8&page=show_problem&cate ...

  2. Uva 12436 Rip Van Winkle&#39;s Code

    Rip Van Winkle was fed up with everything except programming. One day he found a problem whichrequir ...

  3. UVA-12436 Rip Van Winkle's Code (线段树区间更新)

    题目大意:一个数组,四种操作: long long data[250001]; void A( int st, int nd ) { for( int i = st; i <= nd; i++ ...

  4. UVA 12436-Rip Van Winkle's Code(线段树的区间更新)

    题意: long long data[250001]; void A( int st, int nd ) { for( int i = st; i \le nd; i++ ) data[i] = da ...

  5. 线段树总结 (转载 里面有扫描线类 还有NotOnlySuccess线段树大神的地址)

    转载自:http://blog.csdn.net/shiqi_614/article/details/8228102 之前做了些线段树相关的题目,开学一段时间后,想着把它整理下,完成了大牛NotOnl ...

  6. UVALive 3989 Ladies' Choice(稳定婚姻问题:稳定匹配、合作博弈)

    题意:男女各n人,进行婚配,对于每个人来说,所有异性都存在优先次序,即最喜欢某人,其次喜欢某人...输出一个稳定婚配方案.所谓稳定,就是指未结婚的一对异性,彼此喜欢对方的程度都胜过自己的另一半,那么这 ...

  7. FLUENT多孔介质数值模拟设置【转载】

    转载自:http://zhengjun0228.blog.163.com/blog/static/71377014200971895419613/ 多孔介质条件 多孔介质模型可以应用于很多问题,如通过 ...

  8. 编译调试 .NET Core 5.0 Preview 并分析 Span 的实现原理

    很久没有写过 .NET Core 相关的文章了,目前关店在家休息所以有些时间写一篇新的

  9. UVA 11754 - Code Feat(数论)

    UVA 11754 - Code Feat 题目链接 题意:给定一个c个x, y1,y2,y3..yk形式,前s小的答案满足s % x在集合y1, y2, y3 ... yk中 思路:LRJ大白例题, ...

随机推荐

  1. MySQL select 查询之分组和过滤

    SELECT 语法 SELECT [ALL | DISTINCT] {* | table.* | [table.field1[as alias1][,table.field2[as alias2]][ ...

  2. [Usaco2007 Jan]Telephone Lines架设电话线

    题目描述 FarmerJohn打算将电话线引到自己的农场,但电信公司并不打算为他提供免费服务.于是,FJ必须为此向电信公司支付一定的费用.FJ的农场周围分布着N(1<=N<=1,000)根 ...

  3. 如何讲清楚 Java 面向对象的问题与知识?(类与对象,封装,继承,多态,接口,内部类...)

    写在最前面 这个项目是从20年末就立好的 flag,经过几年的学习,回过头再去看很多知识点又有新的理解.所以趁着找实习的准备,结合以前的学习储备,创建一个主要针对应届生和初学者的 Java 开源知识项 ...

  4. Django Full Coverage

    Django(个人推荐, 如果项目较大 需要协同开发, 建议使用django这种重量级框架, 如果类似于纯api的后端应用建议使用 flask, 轻量小巧 , 麻雀虽小五脏俱全) 1.Django是什 ...

  5. flume agent的内部原理

    flume agent 内部原理   1.Source采集数据,EventBuilder.withBody(body)将数据封装成Event对象,source.getChannelProcessor( ...

  6. MySQL 压测

    https://mp.weixin.qq.com/s/vKJZp5cGUetHokGh2EZUXg mysqlslap --iterations=100 --create-schema='test' ...

  7. Set、Map的区别

    应用场景Set用于数据重组,Map用于数据储存Set: (1)成员不能重复(2)只有键值没有键名,类似数组(3)可以遍历,方法有add, delete,hasMap:(1)本质上是健值对的集合,类似集 ...

  8. Python新手入门值流程结构

    if-else socore =int(input('请输入成绩')); if socore>=90 : print("A") elif socore>=80 : pr ...

  9. 【.NET 与树莓派】i2c(IIC)通信

    i2c(或IIC)协议使用两根线进行通信(不包括电源正负极),它们分别为: 1.SDA:数据线,IIC 协议允许在单根数据线上进行双向通信--这条线既可以发送数据,也可以接收数据. 2.SCL:时钟线 ...

  10. Nginx上安装SSL证书

    准备 参考 :链接 下载的Nginx证书压缩文件解压后包含: .pem:证书文件.PEM文件的扩展名为CRT格式. .key:证书密钥文件.申请证书时如果未选择自动创建CRS,则下载的证书文件压缩包中 ...