题意

给你\(n\)和\(m\),问满足以下条件的数列的个数:

  • 数列长度为\(n\)
  • 数列值域范围为\(\left[1,m\right]\)
  • 数列有且仅有一对相等的数
  • 数列是单峰数列(先严格递增后严格递减,严格递增或严格递减)

解题思路

首先从\(m\)元素中挑出\(n-1\)个不同的值,有\(C_m^{n-1}\)种方法。现在数列的值域就可以只看成\(\left[1,n-1\right]\)了。

然后这\(n-1\)个元素中,先放置好\(n-1\),假设重复元素的值为\(i(i\in\left[1,n-2\right])\)。那么这3个元素的位置只有一种放置方法符合条件。还剩下\(n-3\)个元素,这些元素既可以在峰的左侧,也可以在峰的右侧,且对于所有分法都有且只有一种放置方法,所以有\(2^{n-3}\)种方法。最后乘上\(i\)的取值方法数也就是\(n-2\),结果如下:

\[Ans=(n-2)C_m^{n-1}2^{n-3}
\]

AC代码

#include <bits/stdc++.h>
using namespace std; typedef long long ll;
typedef pair<int,int> pi; #define x first
#define y second #define sz(x) ((int)(x).size())
#define all(x) (x).begin(),(x).end()
#define rall(x) (x).rbegin(),(x).rend()
#define endl '\n' const double PI=acos(-1.0); mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
int rnd(int l,int r){return l+rng()%(r-l+1);} namespace IO{
bool REOF = 1; //为0表示文件结尾
inline char nc() {
static char buf[100000], *p1 = buf, *p2 = buf;
return p1 == p2 && REOF && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? (REOF = 0, EOF) : *p1++;
} template<class T>
inline bool read(T &x) {
char c = nc();bool f = 0; x = 0;
while (c<'0' || c>'9')c == '-' && (f = 1), c = nc();
while (c >= '0'&&c <= '9')x = (x << 3) + (x << 1) + (c ^ 48), c = nc();
if(f)x=-x;
return REOF;
} template<typename T, typename... T2>
inline bool read(T &x, T2 &... rest) {
read(x);
return read(rest...);
} inline bool need(char &c) { return ((c >= 'a') && (c <= 'z')) || ((c >= '0') && (c <= '9')) || ((c >= 'A') && (c <= 'Z')); }
// inline bool need(char &c) { return ((c >= 'a') && (c <= 'z')) || ((c >= '0') && (c <= '9')) || ((c >= 'A') && (c <= 'Z')) || c==' '; } inline bool read_str(char *a) {
while ((*a = nc()) && need(*a) && REOF)++a; *a = '\0';
return REOF;
} inline bool read_dbl(double &x){
bool f = 0; char ch = nc(); x = 0;
while(ch<'0'||ch>'9') {f|=(ch=='-');ch=nc();}
while(ch>='0'&&ch<='9'){x=x*10.0+(ch^48);ch=nc();}
if(ch == '.') {
double tmp = 1; ch = nc();
while(ch>='0'&&ch<='9'){tmp=tmp/10.0;x=x+tmp*(ch^48);ch=nc();}
}
if(f)x=-x;
return REOF;
} template<class TH> void _dbg(const char *sdbg, TH h){ cerr<<sdbg<<'='<<h<<endl; } template<class TH, class... TA> void _dbg(const char *sdbg, TH h, TA... a) {
while(*sdbg!=',')cerr<<*sdbg++;
cerr<<'='<<h<<','<<' '; _dbg(sdbg+1, a...);
} template<class T> ostream &operator<<(ostream& os, vector<T> V) {
os << "["; for (auto vv : V) os << vv << ","; return os << "]";
} template<class T> ostream &operator<<(ostream& os, set<T> V) {
os << "["; for (auto vv : V) os << vv << ","; return os << "]";
} template<class T> ostream &operator<<(ostream& os, map<T,T> V) {
os << "["; for (auto vv : V) os << vv << ","; return os << "]";
} template<class L, class R> ostream &operator<<(ostream &os, pair<L,R> P) {
return os << "(" << P.st << "," << P.nd << ")";
} #define debug(...) _dbg(#__VA_ARGS__, __VA_ARGS__)
} using namespace IO;
const int maxn=2e5+5;
const int maxv=2e5+5;
const int mod=998244353; // 998244353 1e9+7
const int INF=1e9+7; // 1e9+7 0x3f3f3f3f 0x3f3f3f3f3f3f3f3f
const double eps=1e-12; int dx[4]={0,1,0,-1};
//int dx[8]={1,0,-1,1,-1,1,0,-1};
int dy[4]={1,0,-1,0};
//int dy[8]={1,1,1,0,0,-1,-1,-1}; // #define ls (x<<1)
// #define rs (x<<1|1)
// #define mid ((l+r)>>1)
// #define lson ls,l,mid
// #define rson rs,mid+1,r // int tot,head[maxn];
// struct Edge{
// int v,nxt;
// Edge(){}
// Edge(int _v,int _nxt):v(_v),nxt(_nxt){}
// }e[maxn<<1];
// void init(){
// tot=1;
// memset(head,0,sizeof(head));
// }
// void addedge(int u,int v){
// e[tot]=Edge(v,head[u]); head[u]=tot++;
// e[tot]=Edge(u,head[v]); head[v]=tot++;
// }
// void addarc(int u,int v){
// e[tot]=Edge(v,head[u]); head[u]=tot++;
// } /**
* ********** Backlight **********
* 仔细读题
* 注意边界条件
* 记得注释输入流重定向
* 没有思路就试试逆向思维
* 加油,奥利给
*/
ll n,m;
ll qp(ll a,ll b){
ll res=1;
while(b){
if(b&1)res=res*a%mod;
a=a*a%mod;
b>>=1;
}
return res;
} ll inv(ll x){return qp(x,mod-2);} void solve(){
read(n,m);
ll ans=n-2;
for(int i=1;i<=m;i++)ans=ans*i%mod;
for(int i=1;i<=n-1;i++)ans=ans*inv(i)%mod;
for(int i=1;i<=m-n+1;i++)ans=ans*inv(i)%mod;
ans=ans*qp(2,n-2)%mod;
ans=ans*inv(2)%mod;
printf("%lld\n",ans);
} int main()
{
// freopen("in.txt","r",stdin);
// ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
// int _T; read(_T); for(int _=1;_<=_T;_++)solve();
// while(read(n))solve();
solve();
return 0;
}

Codeforces1312D Count the Arrays 组合数学的更多相关文章

  1. D. Count the Arrays 计数题

    D. Count the Arrays 也是一个计数题. 题目大意: 要求构造一个满足题意的数列. \(n\) 代表数列的长度 数列元素的范围 \([1,m]\) 数列必须有且仅有一对相同的数 存在一 ...

  2. Codeforces Round #258 (Div. 2) D. Count Good Substrings —— 组合数学

    题目链接:http://codeforces.com/problemset/problem/451/D D. Count Good Substrings time limit per test 2 s ...

  3. HDU 4372 Count the Buildings 组合数学

    题意:有n个点上可能有楼房,从前面可以看到x栋楼,从后面可以看到y栋,问楼的位置有多少种可能. 印象中好像做过这个题,

  4. Educational Codeforces Round 83 D. Count the Arrays(组合,逆元,快速幂)

    题意: 从 m 个数中选 n - 1 个数组成先增后减的长为 n 的数组. 思路: 因为 n 个数中有两个数相同,所以每种情况实际上只有 n - 1 个不同的数--$c_m^{n - 1}$, 除去最 ...

  5. [程序设计语言]-[核心概念]-02:名字、作用域和约束(Bindings)

    本系列导航 本系列其他文章目录请戳这里. 1.名字.约束时间(Binding Time) 在本篇博文开始前先介绍两个约定:第一个是“对象”,除非在介绍面向对象语言时,本系列中出现的对象均是指任何可以有 ...

  6. 305. Number of Islands II

    题目: A 2d grid map of m rows and n columns is initially filled with water. We may perform an addLand  ...

  7. java.util.AbstractStringBuilder源码分析

    AbstractStringBuilder是一个抽象类,是StringBuilder和StringBuffer的父类,分析它的源码对StringBuilder和StringBuffer代码的理解有很大 ...

  8. Java数据结构和算法总结-字符串及高频面试题算法

    前言:周末闲来无事,在七月在线上看了看字符串相关算法的讲解视频,收货颇丰,跟着视频讲解简单做了一下笔记,方便以后翻阅复习同时也很乐意分享给大家.什么字符串在算法中有多重要之类的大路边上的客套话就不多说 ...

  9. LeetCode第七天

    ==数组 Medium== 40.(162)Find Peak Element JAVA //斜率思想,二分法 class Solution { public int findPeakElement( ...

随机推荐

  1. CentOS7系统管理与运维实战

    CentOS7系统管理与运维实战 下载地址 https://pan.baidu.com/s/1KFHVI-XjGaLMrh39WuhyCw 扫码下面二维码关注公众号回复100007 获取分享码 本书目 ...

  2. Hexo小技巧(包括如何插入本地图片)

    我在研究如何在Hexo中引用本地图片时,看到官方文档对此问题已给出了解决方法,并亲测有效.当然,我并不满足于仅仅知道这一个技巧.在大致阅读过官方文档后,我总结了之前我个人并不知道的几个关于Hexo写博 ...

  3. 使用 .NET Core 3.x 构建 RESTFUL Api

    准备工作:在此之前你需要了解关于.NET .Core的基础,前面几篇文章已经介绍:https://www.cnblogs.com/hcyesdo/p/12834345.html 首先需要明确一点的就是 ...

  4. C#设计模式之2-抽象工厂模式

    抽象工厂模式(Abstract Factory Pattern) 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/391 ...

  5. JavaScript 跨站攻击脚本-XSS

    XSS: Cross Site Scripting XSS 概念 恶意攻击者往Web页面里插入恶意script代码, 当用户浏览该页之时,嵌入Web里面的script代码会被执行,从达到恶意攻击的目的 ...

  6. python设计模式之命令模式

    python设计模式之命令模式 现在多数应用都有撤销操作.虽然难以想象,但在很多年里,任何软件中确实都不存在撤销操作.撤销操作是在1974年引入的,但Fortran和Lisp分别早在1957年和195 ...

  7. MIT 6.828 | JOS | 关于虚拟空间和物理空间的总结

    Question: 做lab过程中越来越迷糊,为什么一会儿虚拟地址是4G 物理地址也是4G ,那这有什么作用呢? 解决途径: 停下来,根据当前lab的进展,再回头看上学期操作系统的ppt & ...

  8. linux修改最大的文件描述符(max file descriptors)

    用xshell登录linux系统之后,用命令>ulimit -a 注意到系统模式是1024个 使用>ulimit -n 数量,可临时更改,生效范围为当前会话 永久修改的方法: > v ...

  9. QT+VS环境配置中遇到的问题

    大体流程参考的别人的博客流程如下: QT安装: https://blog.csdn.net/qq_42907800/article/details/107370967?> QT+VS环境配置 h ...

  10. SpringCloude简记_part3

    18. SpringCloud Alibaba Sentinel实现熔断与限流 18.1 Sentiel 官网 https://github.com/alibaba/Sentinel 中文 https ...