支持向量机SVM介绍
SVM为了达到更好的泛化效果,会构建具有"max-margin"的分类器(如下图所示),即最大化所有类里面距离超平面最近的点到超平面的距离,数学公式表示为$$\max\limits_{\vec{w},b}Margin(\vec{w},b)=\max\limits_{\vec{w},b}\min\limits_{i=1,2,\cdots,n}\frac{1}{\lVert{\vec{w}}\rVert_2}y_i(\vec{w}\cdot\vec{x}_i+b),\text{ }y_i\in\{-1,1\}$$

Linear SVM
上述公式可以改写为如下形式$$\min\limits_{\vec{w},b}\frac{1}{2}\lVert{\vec{w}}\rVert_2^2,\text{ subject to } y_i(\vec{w}\cdot\vec{x}_i+b)\geq{1} \text{ for all }i$$
这是一个典型的二次规划问题,并且仅当两个类是线性可分时才有解。可以使用拉格朗日乘数法进行求解,定义$$L(\vec{w},b,\alpha_1,\cdots,\alpha_n)=\frac{1}{2}\lVert{\vec{w}}\rVert_2^2+\sum_{i=1}^n\alpha_i[1-y_i(\vec{w}\cdot\vec{x}_i+b)]$$则SVM的求解问题转换为$\min\limits_{\vec{w},b}[\max\limits_{\alpha_1,\cdots,\alpha_n\geq{0}}L(\vec{w},b,\alpha_1,\cdots,\alpha_n)]$,基于SVM问题的强对偶性,下列等式成立:$$\min\limits_{\vec{w},b}[\max\limits_{\alpha_1,\cdots,\alpha_n\geq{0}}L(\vec{w},b,\alpha_1,\cdots,\alpha_n)]=\max\limits_{\alpha_1,\cdots,\alpha_n\geq{0}}[\min\limits_{\vec{w},b}L(\vec{w},b,\alpha_1,\cdots,\alpha_n)]$$针对上式等号右边的极值问题,首先有$$\frac{\partial{L}}{\partial{\vec{w}}}=0 \Rightarrow \vec{w}=\sum_{i=1}^n\alpha_iy_i\vec{x}_i \text{, }\frac{\partial{L}}{\partial{b}}=0 \Rightarrow \sum_{i=1}^ny_i\alpha_i=0$$将结果带入$L$中可以得到SVM的对偶形式:$$\max\limits_{\alpha_1,\cdots,\alpha_n\geq{0},\sum_{i=1}^ny_i\alpha_i=0}(\sum\limits_{i=1}^n\alpha_i-\frac{1}{2}\sum\limits_{i=1}^n\sum\limits_{j=1}^n\alpha_i\alpha_jy_iy_j\vec{x}_i\cdot\vec{x}_j)$$针对$b$的求解,可以利用KKT条件:$\alpha_i[1-y_i(\vec{w}\cdot\vec{x}_i+b)]=0\text{ for }i=1,2,\cdots,n$,即取任一不为0的$\alpha_i$,令$1-y_i(\vec{w}\cdot\vec{x}_i+b)=0$
最终求得的分类器为$g_{svm}(\vec{x})=sign(\vec{w}\cdot\vec{x}+b)\text{, with }\vec{w}=\sum_{i=1}^n\alpha_iy_i\vec{x}_i$
Kernel SVM
上述的Linear SVM为线性分类器,因此引入核的概念扩展原始数据的维数,使其可以在原始数据空间上变为非线性分类器。核函数的优点是相比于直接进行特征映射可以很大程度上减少计算量,并且维数的扩展形式更加灵活,具体做法是将Linear SVM的对偶形式中两个数据向量的相乘变为核函数的形式,即$$\max\limits_{\alpha_1,\cdots,\alpha_n\geq{0},\sum_{i=1}^ny_i\alpha_i=0}[\sum\limits_{i=1}^n\alpha_i-\frac{1}{2}\sum\limits_{i=1}^n\sum\limits_{j=1}^n\alpha_i\alpha_jy_iy_jK(\vec{x}_i,\vec{x}_j)]$$核函数$K$需要满足以下性质:定义核函数矩阵$K$($K$中的元素$K_{ij}=K(\vec{x}_i,\vec{x}_j)$),则矩阵$K$需为半正定对称矩阵。常用的核函数主要有以下两种:
- 多项式核函数$K(\vec{x}_i,\vec{x}_j)=(r\vec{x}_i\cdot\vec{x}_j+\epsilon)^d\text{, with }r>0,d\text{ is positive integer},\epsilon\geq{0}$
- 高斯核函数$K(\vec{x}_i,\vec{x}_j)=e^{-\gamma\lVert\vec{x}_i-\vec{x}_j\rVert_2^2}\text{, with }\gamma>0$
针对$b$的求解,仍利用KKT条件,取任一不为0的$\alpha_i$,令$1-y_i(\sum_{k=1}^n\alpha_ky_kK(\vec{x}_k,\vec{x}_i)+b)=0$
最终求得的分类器为$g_{svm}(\vec{x})=sign(\sum_{i=1}^n\alpha_iy_iK(\vec{x}_i,\vec{x})+b)$
Soft-Margin SVM
Linear SVM仅当数据为线性可分时才有解,这就使得其实际应用有很大的限制,因此对它的原始公式进行一定程度的改进,使其对错误分类有一定程度的容忍度,具体公式如下:$$\min\limits_{\vec{w},b}(\frac{1}{2}\lVert{\vec{w}}\rVert_2^2+C\sum\limits_{i=1}^n\epsilon_i),\text{ subject to } y_i(\vec{w}\cdot\vec{x}_i+b)\geq{1-\epsilon_i},\epsilon_i\geq{0} \text{ for all }i$$上式中的C越小,对错误分类的容忍度就越高;当C趋于无穷大时就变为了Linear SVM的形式。仍使用拉格朗日乘数法以及SVM的强对偶性质,定义$$L(\vec{w},b,\epsilon_i,\alpha_i,\mu_i)=\frac{1}{2}\lVert{\vec{w}}\rVert_2^2+C\sum\limits_{i=1}^n\epsilon_i+\sum_{i=1}^n\alpha_i[1-\epsilon_i-y_i(\vec{w}\cdot\vec{x}_i+b)]-\sum\limits_{i=1}^n\mu_i\epsilon_i$$上式可变为求解$$\min\limits_{\vec{w},b,\epsilon_i}[\max\limits_{\alpha_i,\mu_i\geq{0}}L(\vec{w},b,\epsilon_i,\alpha_i,\mu_i)]=\max\limits_{\alpha_i,\mu_i\geq{0}}[\min\limits_{\vec{w},b,\epsilon_i}L(\vec{w},b,\epsilon_i,\alpha_i,\mu_i)]$$同样令$\frac{\partial{L}}{\partial{\vec{w}}}=\frac{\partial{L}}{\partial{b}}=\frac{\partial{L}}{\partial{\epsilon_i}}=0$,则对偶问题可写为$$\max\limits_{0\leq\alpha_i\leq{C},\sum_{i=1}^ny_i\alpha_i=0}(\sum\limits_{i=1}^n\alpha_i-\frac{1}{2}\sum\limits_{i=1}^n\sum\limits_{j=1}^n\alpha_i\alpha_jy_iy_j\vec{x}_i\cdot\vec{x}_j)$$同样可以将$\vec{x}_i\cdot\vec{x}_j$替换为$K(\vec{x}_i,\vec{x}_j)$,在分类器中引入核函数,上述对偶问题的KKT条件为:$$\begin{cases} \alpha_i=0:\text{ the point away from the margin boundary with }\epsilon_i=0 \\ 0<\alpha_i<C:\text{ the point on the margin boundary with }\epsilon_i=0\text{ and }1-y_i(\sum_{k=1}^n\alpha_ky_kK(\vec{x}_k,\vec{x}_i)+b)=0 \\ \alpha_i=C:\text{ the point violate the margin boundary with }\epsilon_i>0(\text{the violate amount}) \end{cases}$$

最终求得的分类器为$g_{svm}(\vec{x})=sign(\sum_{i=1}^n\alpha_iy_iK(\vec{x}_i,\vec{x})+b)$
Unconstraint Soft-Margin and SVR
Soft-Margin SVM还可以改写成以下形式:$$\min\limits_{\vec{w},b}[\underbrace{\frac{1}{2C}\lVert{\vec{w}}\rVert_2^2}_\text{Regularization Term}+\sum\limits_{i=1}^n\underbrace{\max(1-y_i(\vec{w}\cdot\vec{x}_i+b),0)}_\text{Loss Function}]$$若在训练中对每个样本分配不同的权重,则上式变为$$\min\limits_{\vec{w},b}[\frac{1}{2C}\lVert{\vec{w}}\rVert_2^2+\sum\limits_{i=1}^ns_i\max(1-y_i(\vec{w}\cdot\vec{x}_i+b),0)]$$求解过程与不加权重的Soft-Margin SVM是一致的,只不过需要将$0\leq\alpha_i\leq{C}$变为$0\leq\alpha_i\leq{Cs_i}$
受上述形式的启发,支持向量机也可用于回归问题(SVR),定义$\epsilon\text{-insensitive loss function }err(y,\hat{y})=\max(\lvert{y-\hat{y}}\rvert-\epsilon,0)$,则SVR为L2正则化的回归问题:$$\min\limits_{\vec{w},b}[\sum\limits_{i=1}^nerr(y_i,\hat{y}_i)+\frac{1}{2C}\lVert{\vec{w}}\rVert_2^2]=\min\limits_{\vec{w},b}[\sum\limits_{i=1}^n\max(\lvert{y_i-(\vec{w}\cdot\vec{x}_i+b)}\rvert-\epsilon,0)+\frac{1}{2C}\lVert{\vec{w}}\rVert_2^2]$$具体求解思路和Soft-Margin SVM基本相同,这里就不再详细叙述了。
支持向量机SVM介绍的更多相关文章
- OpenCV支持向量机(SVM)介绍
支持向量机(SVM)介绍 目标 本文档尝试解答如下问题: 如何使用OpenCV函数 CvSVM::train 训练一个SVM分类器, 以及用 CvSVM::predict 测试训练结果. 什么是支持向 ...
- OpenCV支持向量机SVM对线性不可分数据的处理
支持向量机对线性不可分数据的处理 目标 本文档尝试解答如下问题: 在训练数据线性不可分时,如何定义此情形下支持向量机的最优化问题. 如何设置 CvSVMParams 中的参数来解决此类问题. 动机 为 ...
- 机器学习:Python中如何使用支持向量机(SVM)算法
(简单介绍一下支持向量机,详细介绍尤其是算法过程可以查阅其他资) 在机器学习领域,支持向量机SVM(Support Vector Machine)是一个有监督的学习模型,通常用来进行模式识别.分类(异 ...
- 以图像分割为例浅谈支持向量机(SVM)
1. 什么是支持向量机? 在机器学习中,分类问题是一种非常常见也非常重要的问题.常见的分类方法有决策树.聚类方法.贝叶斯分类等等.举一个常见的分类的例子.如下图1所示,在平面直角坐标系中,有一些点 ...
- 一步步教你轻松学支持向量机SVM算法之案例篇2
一步步教你轻松学支持向量机SVM算法之案例篇2 (白宁超 2018年10月22日10:09:07) 摘要:支持向量机即SVM(Support Vector Machine) ,是一种监督学习算法,属于 ...
- 支持向量机SVM 参数选择
http://ju.outofmemory.cn/entry/119152 http://www.cnblogs.com/zhizhan/p/4412343.html 支持向量机SVM是从线性可分情况 ...
- 大数据-10-Spark入门之支持向量机SVM分类器
简介 支持向量机SVM是一种二分类模型.它的基本模型是定义在特征空间上的间隔最大的线性分类器.支持向量机学习方法包含3种模型:线性可分支持向量机.线性支持向量机及非线性支持向量机.当训练数据线性可分时 ...
- [转] 从零推导支持向量机 (SVM)
原文连接 - https://zhuanlan.zhihu.com/p/31652569 摘要 支持向量机 (SVM) 是一个非常经典且高效的分类模型.但是,支持向量机中涉及许多复杂的数学推导,并需要 ...
- 线性可分支持向量机--SVM(1)
线性可分支持向量机--SVM (1) 给定线性可分的数据集 假设输入空间(特征向量)为,输出空间为. 输入 表示实例的特征向量,对应于输入空间的点: 输出 表示示例的类别. 线性可分支持向量机的定义: ...
随机推荐
- linux $* 和$@例子
参见ibm网站示例: https://www.ibm.com/developerworks/cn/linux/l-bash-parameters.html 示例: [ian@pinguino ~]$ ...
- 【Nginx】如何格式化日志并推送到远程服务器?看完原来很简单!!
写在前面 Nginx作为最常用的反向代理和负载均衡服务器,被广泛的应用在众多互联网项目的前置服务中,很多互联网项目直接将Nginx服务器作为整个项目的流量入口.这就使得我们可以通过对Nginx服务器日 ...
- java大数据最全课程学习笔记(3)--HDFS 简介及操作
目前CSDN,博客园,简书同步发表中,更多精彩欢迎访问我的gitee pages 目录 HDFS 简介及操作 HDFS概述 HDFS产出背景及定义 HDFS优缺点 HDFS组成架构 HDFS文件块大小 ...
- OGG19.1 oracle12c到oracle12c经典模式配置实施
OGG19.1 oracle12c到oracle12c经典和集成模式配置实施 目的说明 本文提供Oracle GoldenGate在Oracle db到Oracle db的数据复制安装配置指导,适用于 ...
- Redis 6.0 新特性 ACL 介绍
Redis 6.0 新特性 ACL 介绍 Intro 在 Redis 6.0 中引入了 ACL(Access Control List) 的支持,在此前的版本中 Redis 中是没有用户的概念的,其实 ...
- 一起学Blazor WebAssembly 开发(2)
上篇文章讲了Blazor的两种模式的区别及各自的使用场景,本篇就开始学习WebAssembly模式,本篇主要学习的是创建项目及认识项目结构: 创建项目 选择Blazor应用 选择WebAssembly ...
- 题解 洛谷 P4569 【[BJWC2011]禁忌】
考虑用\(AC\)自动机来解决本题这样的多字符串匹配问题. 要最大化魔法分割后得到的禁忌串数目,最优情况肯定为在一个串中每个禁忌串的右端点进行分割.对应到\(AC\)自动机上,就是匹配到一个禁忌串后, ...
- 借鉴一个比较标准的后端RESTful API
我们制定的 API 规范,使用了微服务架构所以做了一些改进,我们更偏向使用 http code 标识,不然需要自己处理成功或失败的逻辑,在 200 内再包一层显得啰嗦:并且微服务系列都不支持,Feig ...
- 《python开发技术详解》|百度网盘免费下载|Python开发入门篇
<python开发技术详解>|百度网盘免费下载|Python开发入门篇 提取码:2sby 内容简介 Python是目前最流行的动态脚本语言之一.本书共27章,由浅入深.全面系统地介绍了利 ...
- Java进阶专题(十一) 想理解JVM看了这篇文章,就知道了!(中)
前言 上次讲解了JVM内存相关知识,今天继续JVM专题. JVM垃圾回收算法 什么是垃圾回收 程序的运行必然需要申请内存资源,无效的对象资源如果不及时处理就会一直占有内存资源,最终将导致内存溢 ...