朴素版和堆优化版dijkstra和朴素版prim算法比较
1.dijkstra
时间复杂度:O(n^2)
n次迭代,每次找到距离集合S最短的点
每次迭代要用找到的点t来更新其他点到S的最短距离。
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int N=510;
int g[N][N];
int dis[N],n,m;//dis[i]表示节点i到初始点的最短距离
bool st[N];
int dijkstra()
{
memset(dis,0x3f,sizeof dis);
dis[1]=0;
//st[S]=1;如果在迭代之前,将起点放入S数组后,24行,一直无法找到距离S的最近节点。
//相反27行直接判断st[t]=true,可以找到第一个节点,并一直进行下去。
for(int i=1;i<=n;i++)//n次迭代,没次找到距离集合S的最短的点
{
int t=-1;
for(int j=1;j<=n;j++)
{
if(!st[j]&&(t==-1||dis[j]<dis[t]))
{
t=j;
}
}
st[t]=1;//这是第一个节点。
//找到节点t是距离集合S的最短距离的点之后
//用t来更新其他点到s的距离
for(int j=i;j<=n;j++)
{
dis[j]=min(dis[j],dis[t]+g[t][j]);
}
}
if(dis[n]==0x3f3f3f3f)return -1;
else
return dis[n];
}
int main()
{
memset(g,0x3f,sizeof g);
/*
初始化成0会比较好,但不初始化也没关系。因为题目中说所有边权都是正的,
所以 dist[i] + g[i][i] 一定大于 dist[i],所以i->i这条边一定不会被用到。
*/
cin>>n>>m;
for(int i=0;i<m;i++)
{
int a,b,c;
cin>>a>>b>>c;
g[a][b]=min(g[a][b],c);
}
cout<<dijkstra()<<endl;
return 0;
}
2.堆优化版dijkstra
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
typedef pair<int,int>PII;
#define ff first
#define ss second
const int N=2e5+10;
int dis[N],n,m,idx,h[N],ne[N],e[N],w[N];
bool st[N];
void add(int a,int b,int c)
{
e[idx]=b;
w[idx]=c;
ne[idx]=h[a];
h[a]=idx++;
}
int dijkstra()
{
memset(dis,0x3f,sizeof dis);
dis[1]=0;
priority_queue<PII,vector<PII>,greater<PII>>heap;
heap.push({0,1});
while(heap.size())
{
auto t=heap.top();
heap.pop();
int dist=t.ff,indx=t.ss;
if(st[indx])continue;
st[indx]=1;
for(int i=h[indx];~i;i=ne[i])//用找到的距离集合S最近的点来更新其他点到集合S的距离
{
int j=e[i];
if(dis[j]>dis[indx]+w[i])
{
dis[j]=dis[indx]+w[i];
heap.push({dis[j],j});
}
}
}
if(dis[n]==0x3f3f3f3f)return -1;
else
return dis[n];
}
int main()
{
memset(h,-1,sizeof h);
cin>>n>>m;
while(m--)
{
int a,b,c;
cin>>a>>b>>c;
add(a,b,c);
}
cout<<dijkstra();
}
2.prim
时间复杂度:O(n^2)
同dijkstra算法
#include<iostream>
#include<cstring>
#include<algorithm>
//稠密图
using namespace std;
const int N=510,M=1e5+10;
//Prim算法给出最小生成树的权重和
int g[N][N],dis[N];
//dis[i]表示第i个点到已经纳入最小生成树集合S的最小距离
int n,m,res;
bool st[N];
int prim()
{
memset(dis,0x3f,sizeof dis);
for(int i=0;i<n;i++)
{
int t=-1;//那个点是哪个点?
for(int j=1;j<=n;j++)//在n个点中寻找不到集合S中距离
//S最近的点的标号
{
if(!st[j]&&(t==-1||dis[j]<dis[t]))
t=j;
}
//找到了那个点t
st[t]=1;
//中间关于i==0时的几个判断
//cout<<dis[t]<<endl;
if(i)
{
res+=dis[t];
//cout<<res<<endl;
}
//在n次迭代中的判断,如果该图是一个不连通图,不存在最小生成树
if(i&&dis[t]==0x3f3f3f3f)return 0x3f3f3f;
//用t点来更新其他点到S的距离
for(int j=1;j<=n;j++)
dis[j]=min(dis[j],g[t][j]);
}
return res;
}
int main()
{
cin>>n>>m;
memset(g,0x3f,sizeof g);
while(m--)
{
int a,b,c;cin>>a>>b>>c;
g[a][b]=g[b][a]=min(g[a][b],c);
}
int t=prim();
if(t==0x3f3f3f)
cout<<"impossible"<<endl;
else
cout<<t;
return 0;
}
朴素版和堆优化版dijkstra和朴素版prim算法比较的更多相关文章
- 堆优化的Dijkstra
SPFA在求最短路时不是万能的.在稠密图时用堆优化的dijkstra更加高效: typedef pair<int,int> pii; priority_queue<pii, vect ...
- POJ1797 Heavy Transportation (堆优化的Dijkstra变形)
Background Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand bus ...
- 学习笔记·堆优化$\mathscr{dijkstra}$
嘤嘤嘤今天被迫学了这个算法--其实对于学习图论来说我内心是拒绝的\(\mathscr{qnq}\) 由于发现关于这个\(\mathscr{SPFA}\)的时间复杂度\(O(kE)\)中的\(k \ap ...
- JZYZOJ1525 HAOI2012道路 堆优化的dijkstra+pair
From Tyvj Guest ☆[haoi2012]道路 描述 Description C国有n座城市,城市之间通过m条单向道路连接.一条路径被称为最短路,当 ...
- 堆优化的dijkstra算法
#include<bits/stdc++.h> using namespace std; #define ll long long #define P pair<int,int> ...
- 【模板】堆优化的dijkstra
生命算法,以防忘记 #include<bits/stdc++.h> using namespace std; int head[200005],dis[200005],n,m,s,f,g, ...
- POJ-2387.Til the Cows Come Home.(五种方法:Dijkstra + Dijkstra堆优化 + Bellman-Ford + SPFA + Floyd-Warshall)
昨天刚学习完最短路的算法,今天开始练题发现我是真的菜呀,居然能忘记邻接表是怎么写的,真的是菜的真实...... 为了弥补自己的菜,我决定这道题我就要用五种办法写出,并在Dijkstra算法堆优化中另外 ...
- 【51nod1443】路径和树(堆优化dijkstra乱搞)
点此看题面 大致题意:给你一个无向联通图,要求你求出这张图中从u开始的权值和最小的最短路径树的权值之和. 什么是最短路径树? 从\(u\)开始到任意点的最短路径与在原图中相比不变. 题解 既然要求最短 ...
- 【Dijkstra堆优化】洛谷P2243电路维修
题目背景 Elf 是来自Gliese 星球的少女,由于偶然的原因漂流到了地球上.在她无依无靠的时候,善良的运输队员Mark 和James 收留了她.Elf 很感谢Mark和James,可是一直也没能给 ...
随机推荐
- Java进阶专题(十一) 探究JMM
前言 JMM即java内存模型,JMM研究的就是多线程下Java代码的执行顺序,共享变量的读写.它定义了Java虚拟机在计算机内存中的工作方式.从抽象角度看,JMM定义了线程和主存之间的抽象关系: ...
- pandas 数据子集的获取
有时数据读入后并不是对整体数据进行分析,而是数据中的部分子集,例如,对于地铁乘客量可能只关心某些时间段的流量,对于商品的交易可能只需要分析某些颜色的价格变动,对于医疗诊断数据可能只对某个年龄段的人群感 ...
- [HDU6793] Tokitsukaze and Colorful Tree
题目 又是一个条历新年,窗前的灼之花又盛开了. 时隔多年,现在只有这一棵树上盛开着残存的 \(n\) 朵灼之花了. 尽管如此,这些灼之 花仍散发出不同色彩的微弱的光芒. 灼之花的生命极为短暂,但它的花 ...
- IDEA常用快捷键Mac os和Windows对照--用到了就会更新
之前公司用了一段的MacBookPro,离职后自己入手了一台MacBookPro.但是现在的公司中使用的电脑是古老的win7,两个系统的键盘有些许差别,而且快捷键也略有不同.最近因为疫情影响,在家远程 ...
- 实用的git log用法
git log可以很方便地查看日志,可以根据自己需要,将日志按照特定格式显示,或者输出某种格式. 最原始的输出样式: $ git log commit ca82a6dff817ec66f4434200 ...
- Istio的流量管理(实操三)
Istio的流量管理(实操三) 涵盖官方文档Traffic Management章节中的egress部分.其中有一小部分问题(已在下文标注)待官方解决. 目录 Istio的流量管理(实操三) 访问外部 ...
- 分享几个好用的ui框架,以便开发
1:Layui--经典模块化前端框架 地址:https://www.layui.com/ 2:iview--基于 Vue.js 的高质量 UI 组件库 地址:http://v1.iviewui.com ...
- tp5下的文件上传与下载类
class FieldInterfun extends Controller { /** * [upload 上传文件] * @param [type] $file [description] * @ ...
- Tomact的中文乱码设置
在使用Tomact时,有时候使用中文时,窗口会把中文部分显示为乱码,这时需要修改相关配置,让其正常显示. 1.修改server.xml的配置,解决显示窗口的乱码 打开Tomcat下/bin/serve ...
- css动画是否会被js阻塞
css动画是否会被js阻塞 css的动画部分是会被js阻塞的,不过transform的动画则不会受影响. 下面举一个margin-left移动的动画下,启动js阻塞动画的性能图表 <style& ...