朴素版和堆优化版dijkstra和朴素版prim算法比较
1.dijkstra
时间复杂度:O(n^2)
n次迭代,每次找到距离集合S最短的点
每次迭代要用找到的点t来更新其他点到S的最短距离。
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int N=510;
int g[N][N];
int dis[N],n,m;//dis[i]表示节点i到初始点的最短距离
bool st[N];
int dijkstra()
{
memset(dis,0x3f,sizeof dis);
dis[1]=0;
//st[S]=1;如果在迭代之前,将起点放入S数组后,24行,一直无法找到距离S的最近节点。
//相反27行直接判断st[t]=true,可以找到第一个节点,并一直进行下去。
for(int i=1;i<=n;i++)//n次迭代,没次找到距离集合S的最短的点
{
int t=-1;
for(int j=1;j<=n;j++)
{
if(!st[j]&&(t==-1||dis[j]<dis[t]))
{
t=j;
}
}
st[t]=1;//这是第一个节点。
//找到节点t是距离集合S的最短距离的点之后
//用t来更新其他点到s的距离
for(int j=i;j<=n;j++)
{
dis[j]=min(dis[j],dis[t]+g[t][j]);
}
}
if(dis[n]==0x3f3f3f3f)return -1;
else
return dis[n];
}
int main()
{
memset(g,0x3f,sizeof g);
/*
初始化成0会比较好,但不初始化也没关系。因为题目中说所有边权都是正的,
所以 dist[i] + g[i][i] 一定大于 dist[i],所以i->i这条边一定不会被用到。
*/
cin>>n>>m;
for(int i=0;i<m;i++)
{
int a,b,c;
cin>>a>>b>>c;
g[a][b]=min(g[a][b],c);
}
cout<<dijkstra()<<endl;
return 0;
}
2.堆优化版dijkstra
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
typedef pair<int,int>PII;
#define ff first
#define ss second
const int N=2e5+10;
int dis[N],n,m,idx,h[N],ne[N],e[N],w[N];
bool st[N];
void add(int a,int b,int c)
{
e[idx]=b;
w[idx]=c;
ne[idx]=h[a];
h[a]=idx++;
}
int dijkstra()
{
memset(dis,0x3f,sizeof dis);
dis[1]=0;
priority_queue<PII,vector<PII>,greater<PII>>heap;
heap.push({0,1});
while(heap.size())
{
auto t=heap.top();
heap.pop();
int dist=t.ff,indx=t.ss;
if(st[indx])continue;
st[indx]=1;
for(int i=h[indx];~i;i=ne[i])//用找到的距离集合S最近的点来更新其他点到集合S的距离
{
int j=e[i];
if(dis[j]>dis[indx]+w[i])
{
dis[j]=dis[indx]+w[i];
heap.push({dis[j],j});
}
}
}
if(dis[n]==0x3f3f3f3f)return -1;
else
return dis[n];
}
int main()
{
memset(h,-1,sizeof h);
cin>>n>>m;
while(m--)
{
int a,b,c;
cin>>a>>b>>c;
add(a,b,c);
}
cout<<dijkstra();
}
2.prim
时间复杂度:O(n^2)
同dijkstra算法
#include<iostream>
#include<cstring>
#include<algorithm>
//稠密图
using namespace std;
const int N=510,M=1e5+10;
//Prim算法给出最小生成树的权重和
int g[N][N],dis[N];
//dis[i]表示第i个点到已经纳入最小生成树集合S的最小距离
int n,m,res;
bool st[N];
int prim()
{
memset(dis,0x3f,sizeof dis);
for(int i=0;i<n;i++)
{
int t=-1;//那个点是哪个点?
for(int j=1;j<=n;j++)//在n个点中寻找不到集合S中距离
//S最近的点的标号
{
if(!st[j]&&(t==-1||dis[j]<dis[t]))
t=j;
}
//找到了那个点t
st[t]=1;
//中间关于i==0时的几个判断
//cout<<dis[t]<<endl;
if(i)
{
res+=dis[t];
//cout<<res<<endl;
}
//在n次迭代中的判断,如果该图是一个不连通图,不存在最小生成树
if(i&&dis[t]==0x3f3f3f3f)return 0x3f3f3f;
//用t点来更新其他点到S的距离
for(int j=1;j<=n;j++)
dis[j]=min(dis[j],g[t][j]);
}
return res;
}
int main()
{
cin>>n>>m;
memset(g,0x3f,sizeof g);
while(m--)
{
int a,b,c;cin>>a>>b>>c;
g[a][b]=g[b][a]=min(g[a][b],c);
}
int t=prim();
if(t==0x3f3f3f)
cout<<"impossible"<<endl;
else
cout<<t;
return 0;
}
朴素版和堆优化版dijkstra和朴素版prim算法比较的更多相关文章
- 堆优化的Dijkstra
SPFA在求最短路时不是万能的.在稠密图时用堆优化的dijkstra更加高效: typedef pair<int,int> pii; priority_queue<pii, vect ...
- POJ1797 Heavy Transportation (堆优化的Dijkstra变形)
Background Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand bus ...
- 学习笔记·堆优化$\mathscr{dijkstra}$
嘤嘤嘤今天被迫学了这个算法--其实对于学习图论来说我内心是拒绝的\(\mathscr{qnq}\) 由于发现关于这个\(\mathscr{SPFA}\)的时间复杂度\(O(kE)\)中的\(k \ap ...
- JZYZOJ1525 HAOI2012道路 堆优化的dijkstra+pair
From Tyvj Guest ☆[haoi2012]道路 描述 Description C国有n座城市,城市之间通过m条单向道路连接.一条路径被称为最短路,当 ...
- 堆优化的dijkstra算法
#include<bits/stdc++.h> using namespace std; #define ll long long #define P pair<int,int> ...
- 【模板】堆优化的dijkstra
生命算法,以防忘记 #include<bits/stdc++.h> using namespace std; int head[200005],dis[200005],n,m,s,f,g, ...
- POJ-2387.Til the Cows Come Home.(五种方法:Dijkstra + Dijkstra堆优化 + Bellman-Ford + SPFA + Floyd-Warshall)
昨天刚学习完最短路的算法,今天开始练题发现我是真的菜呀,居然能忘记邻接表是怎么写的,真的是菜的真实...... 为了弥补自己的菜,我决定这道题我就要用五种办法写出,并在Dijkstra算法堆优化中另外 ...
- 【51nod1443】路径和树(堆优化dijkstra乱搞)
点此看题面 大致题意:给你一个无向联通图,要求你求出这张图中从u开始的权值和最小的最短路径树的权值之和. 什么是最短路径树? 从\(u\)开始到任意点的最短路径与在原图中相比不变. 题解 既然要求最短 ...
- 【Dijkstra堆优化】洛谷P2243电路维修
题目背景 Elf 是来自Gliese 星球的少女,由于偶然的原因漂流到了地球上.在她无依无靠的时候,善良的运输队员Mark 和James 收留了她.Elf 很感谢Mark和James,可是一直也没能给 ...
随机推荐
- 超详细的阿里字节Spring面试技术点总结(建议收藏)
前言 Spring作为现在最流行Java开发技术,其内部源码设计非常优秀. Spring这个词对于Java开发者想必不会陌生,可能你每天都在使用Spring,享受着Spring生态提供的服务.现在很多 ...
- go thrift demo
接口:https://gowalker.org/github.com/apache/thrift/lib/go/thrift 参考文件:https://cong.im/2018/05/14/other ...
- 洛谷T90444 密码 题解
[问题描述] 假发通过了不懈的努力,得到了将军家门锁的密码(一串小写英文字母).但是假发被十四和猩猩他们盯上了,所以假发需要把密码传递出去.因为假发不想十四他们发现几松门前贴的小纸条就是将军家的密码, ...
- lombook插件的说明
lombok是一个可以帮助我们简化java代码编写的工具类,尤其是简化javabean的编写,即通过采用注解的方式,消除代码中的构造方法,getter/setter等代码,使我们写的类更加简洁,当然, ...
- Hadoop 3.x 与Hadoop 2.x 的区别和优化点
Hadoop 3.x 与Hadoop 2.x 的区别和优化点 通用性 1.精简Hadoop内核,包括剔除过期的API和实现,将默认组件实现替换成最高效的实现(比如将FileOutputCommitte ...
- 喵的Unity游戏开发之路 - 在球体上行走
很多童鞋没有系统的Unity3D游戏开发基础,也不知道从何开始学.为此我们精选了一套国外优秀的Unity3D游戏开发教程,翻译整理后放送给大家,教您从零开始一步一步掌握Unity3D游戏开发. 本文不 ...
- 超市管理系统C语言
登录系统 # include <stdio.h> //头文件 # include <string.h> //字符串头文件 # include <stdlib.h> ...
- 位运算处理字符大小写转换 - 关联Leetcode 709. 转成小写字母
大写变小写.小写变大写 : 字符 ^= 32; 大写变小写.小写变小写 : 字符 |= 32; 小写变大写.大写变大写 : 字符 &= -33; 题目 实现函数 ToLowerCase(),该 ...
- 组件 popup 设计和源码剖析
前言 NutUI 是一套京东风格的移动端 Vue 组件库,生态系统覆盖面广,支持按需加载.主题定制.多语言等,功能强大.目前 40+ 京东项目正在使用,设计精美,风格统一.在开发组件库的过程中,Nut ...
- 我用 Java 8 写了一段逻辑,同事直呼看不懂,你试试看。。
业务背景 首先,业务需求是这样的,从第三方电商平台拉取所有订单,然后保存到公司自己的数据库,需要判断是否有物流信息,如果有物流信息,还需要再进行上传. 而第三方接口返回的数据是 JSON 格式的,其中 ...