A secret service developed a new kind of explosive that attain its volatile property only when a specific association of products occurs. Each product is a mix of two different simple compounds, to which we call a binding pair. If N > 2, then mixing N different binding pairs containing N simple compounds creates a powerful explosive. For example, the binding pairs A+B, B+C, A+C (three pairs, three compounds) result in an explosive, while A+B, B+C, A+D (three pairs, four compounds) does not. You are not a secret agent but only a guy in a delivery agency with one dangerous problem: receive binding pairs in sequential order and place them in a cargo ship. However, you must avoid placing in 

the same room an explosive association. So, after placing a set of pairs, if you receive one pair that might produce an explosion with some of the pairs already in stock, you must refuse it, otherwise, you must accept it. An example. Lets assume you receive the following sequence: A+B, G+B, D+F, A+E, E+G, F+H. You would accept the first four pairs but then refuse E+G since it would be possible to make the following explosive with the previous pairs: A+B, G+B, A+E, E+G (4 pairs with 4 simple compounds). Finally, you would accept the last pair, F+H. Compute the number of refusals given a sequence of binding pairs. 

Input 

The input will contain several test cases, each of them as described below. Consecutive 

test cases are separated by a single blank line. Instead of letters we will use integers to represent compounds. The input contains several lines. Each line (except the last) consists of two integers (each integer lies between 0 and 10 5 ) separated by a single space, representing a binding pair. Each test case ends in a line with the number ‘-1’. You may assume that no repeated binding pairs appears in the input. 

Output 

For each test case, the output must follow the description below. A single line with the number of refusals. 

Sample Input 

1 2 

3 4 

3 5 

3 1 

2 3 

4 1 

2 6 

6 5 

-1 

Sample Output 

3

题意:有若干个由两种元素组成的简单化合物,现在把它们装进车里,如果车里有k种简单化合物并且在这k种简单化合物中恰好有k种元素的话,那么就会引发爆炸,所以车上的化合物必须避免满足这个条件。求出这些化合物中有多少个化合物不能装进车。

分析:最开始没有找到规律,直到后来用图的思想去思考后才发现规律,发生爆炸的条件就是形成环。怎么判断有没有形成环呢?可以用并查集构造树,如果即将合并的两个结点有相同的根,则会形成环。

AC代码如下(3ms) :

#include <stdio.h>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std;
#define fast ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
#define ll long long const int maxn = 1e5 + 5;
int par[maxn]; void init(int n)
{
for (int i = 0; i < maxn; i++)
par[i] = i;
} int find_(int x)
{
return (par[x] == x) ? x : par[x] = find_(par[x]);
} int main()
{
int x,y;
while (~scanf("%d", &x))
{
int ans = 0;
init(maxn);
while (x != -1)
{
scanf("%d", &y);
int rx = find_(x);
int ry = find_(y);
if (rx == ry)ans++;//如果即将连接的两个结点拥有相同的根,则会成环
else par[rx] = ry;
scanf("%d", &x);
}
printf("%d\n", ans);
}
return 0;
}

UVALive - 3644 X-Plosives (并查集)的更多相关文章

  1. UVALive(LA) 3644 X-Plosives (并查集)

    题意: 有一些简单化合物,每个化合物都由两种元素组成的,你是一个装箱工人.从实验员那里按照顺序把一些简单化合物装到车上,但这里存在安全隐患:如果车上存在K个简单化合物,正好包含K种元素,那么他们就会组 ...

  2. UVALive 4487 Exclusive-OR 加权并查集神题

    已知有 x[0-(n-1)],但是不知道具体的值,题目给定的信息 只有 I P V,说明 Xp=V,或者 I P Q V,说明 Xp ^ Xq=v,然后要求回答每个询问,询问的是 某任意的序列值 Xp ...

  3. UVALive - 3027 Corporative Network (并查集)

    这题比较简单,注意路径压缩即可. AC代码 //#define LOCAL #include <stdio.h> #include <algorithm> using name ...

  4. UVALive 6910 Cutting Tree 并查集

    Cutting Tree 题目连接: https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8& ...

  5. UVALive 6906 Cluster Analysis 并查集

    Cluster Analysis 题目连接: https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemi ...

  6. UVALive 6889 City Park 并查集

    City Park 题目连接: http://acm.hust.edu.cn/vjudge/contest/view.action?cid=122283#problem/F Description P ...

  7. UVALive - 3644 X-Plosives (并查集)

    思路:每一个product都可以作一条边,每次添加一条边,如果这边的加入使得某个集合构成环,就应该refuse,那么就用并查集来判断. AC代码: //#define LOCAL #include & ...

  8. 简单并查集 -- HDU 1232 UVALA 3644 HDU 1856

    并查集模板: #include<iostream> using namespace std; ],x,y; ]; //初始化 x 集合 void init(int n) { ; i< ...

  9. LA 3644 易爆物 并查集

    题目链接: https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show ...

随机推荐

  1. TestLoader源码解析

    def loadTestsFromTestCase(self, testCaseClass) #看名称分析:从TestCase找测试集--那么就是把我们的def用例加载到testSuit里面 def ...

  2. 成为python程序员,对疫情过后的毕业生来说,真是一个不错的方向吗?

    Python最近几年,一直被炒得很火,这其中有商业因素,但更重要的是即将到来的人工智能时代,而python就恰好是最适合的编程语言. 所以无论是在职的人,还是在校的学生,都想着跟上这一趋势,但,在今年 ...

  3. 入门大数据---Hive视图和索引

    一.视图 1.1 简介 Hive 中的视图和 RDBMS 中视图的概念一致,都是一组数据的逻辑表示,本质上就是一条 SELECT 语句的结果集.视图是纯粹的逻辑对象,没有关联的存储 (Hive 3.0 ...

  4. linux查看当前目录下,各文件夹大小

    du -lh --max-depth=1

  5. igate(因特网网关)

    网关:Gateway 又称网间连接器.协议转换器.-----复杂的网络互连设备. 网关在网络层以上实现网络互连,是复杂的网络互连设备,仅用于两个高层协议不同的网络互连.网关既可以用于广域网互连,也可以 ...

  6. 安装mysql教程

    linux下安装mysql 方式一:源码包安装 环境介绍:本安装教程基于虚拟机CentOS7.6版本进行安装,mysql版本为5.7版本. 一.卸载已安装的mysql服务 由于我原本在虚拟机已安装过m ...

  7. 以api文档为中心--前后端分开发离新思维

    api文档编写好像很简单,其实不是.一个良好的api文档,需要就有以下内容:接口详细描述,接口参数详细描述,接口返回结果详细描述,容易理解的范例.这些内容其实是不少的,编写过程中还非常单调乏味.再加上 ...

  8. MySQL常规操作

    数据库的相关概念 一.数据库的好处 1.可以持久化数据到本地 2.结构化查询 二.数据库的常见概念 ★ 1.DB:数据库,存储数据的容器 2.DBMS:数据库管理系统,又称为数据库软件或数据库产品,用 ...

  9. 微服务框架Demo.MicroServer运行手册

    一.背景说明: 之前分享过一个微服务开发框架, "享一个集成.NET Core+Swagger+Consul+Polly+Ocelot+IdentityServer4+Exceptionle ...

  10. 【译】Exception Helper – Rethrown Exceptions

    是否曾经在异步编程时引发过异常?因为调试器没有显示异常发生的位置而感到沮丧?或者在查看具有内部异常的异常时感到沮丧?调试器不容易显示该异常来自何处.从 Visual Studio 2019 16.5 ...