题目内容

洛谷链接

Farmer John正在一个新的销售区域对他的牛奶销售方案进行调查。他想把牛奶送到\(T\)个城镇 (\(1 <= T <= 25,000\)),编号为\(1\)到\(T\)。这些城镇之间通过R条道路 (\(1 <= R <= 50,000\),编号为\(1\)到\(R\)) 和\(P\)条航线 (\(1 <= P <= 50,000\),编号为\(1\)到\(P\)) 连接。每条道路i或者航线i连接城镇\(A_i\) (\(1 <= A_i <= T\))到\(B_i\) (\(1 <= B_i <= T\)),花费为\(C_i\)。对于道路,\(0 <= C_i <= 10\),000;然而航线的花费很神奇,花费\(C_i\)可能是负数(\(-10,000 <= C_i <= 10000\))。道路是双向的,可以从\(A_i\)到\(B_i\),也可以从\(B_i\)到\(A_i\),花费都是\(C_i\)。然而航线与之不同,只可以从\(A_i\)到\(B_i\)。事实上,由于最近恐怖主义太嚣张,为了社会和谐,出台 了一些政策保证:如果有一条航线可以从\(A_i\)到\(B_i\),那么保证不可能通过一些道路和航线从\(B_i\)回到\(A_i\)。由于FJ的奶牛世界公认十分给力,他需要运送奶牛到每一个城镇。他想找到从发送中心城镇\(S\)(\(1 <= S <= T\)) 把奶牛送到每个城镇的最便宜的方案,或者知道这是不可能的。

思路

有两种路径,一种没负数,一种没环,求单源最短路。

SPFA+SLF优化,不过这个好像不是正解,正解目前还没看懂(捂脸)。

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn=30000+5;
const int INF=0x3f3f3f3f;
int n,m,r,p,s;
int dis[maxn],vis[maxn];
vector<pair<int,int> > g[maxn]; int main(){
scanf("%d%d%d%d",&n,&r,&p,&s);
for(int i=1;i<=r;++i){
int x,y,w;
scanf("%d%d%d",&x,&y,&w);
g[x].push_back(make_pair(y,w));
g[y].push_back(make_pair(x,w));
}
for(int i=1;i<=p;++i){
int x,y,w;
scanf("%d%d%d",&x,&y,&w);
g[x].push_back(make_pair(y,w));
}
memset(dis,0x3f,sizeof(dis));
dis[s]=0;vis[s]=1;
deque<int>q;
q.push_back(s);
while(!q.empty()){
int x=q.front(),len=g[x].size();q.pop_front();vis[x]=0;
for(int i=0;i<len;++i){
int y=g[x][i].first,w=g[x][i].second;
if(dis[y]>dis[x]+w){
dis[y]=dis[x]+w;
if(!vis[y]){
vis[y]=1;
if(q.empty()||dis[y]>=dis[q.front()])q.push_back(y);
else q.push_front(y);
}
}
}
}
for(int i=1;i<=n;++i){
if(dis[i]==INF)printf("NO PATH\n");
else printf("%d\n",dis[i]);
}
return 0;
}

【图论】USACO11JAN Roads and Planes G的更多相关文章

  1. [USACO11JAN]Roads and Planes G【缩点+Dij+拓补排序】

    题目 Farmer John正在一个新的销售区域对他的牛奶销售方案进行调查.他想把牛奶送到T个城镇 (1 <= T <= 25,000),编号为1T.这些城镇之间通过R条道路 (1 < ...

  2. P3008 [USACO11JAN]Roads and Planes G 拓扑排序+Dij

    题目描述 Farmer John正在一个新的销售区域对他的牛奶销售方案进行调查.他想把牛奶送到T个城镇 (1 <= T <= 25,000),编号为1T.这些城镇之间通过R条道路 (1 & ...

  3. P3008 [USACO11JAN]Roads and Planes G (最短路+拓扑排序)

    该最短路可不同于平时简单的最短路模板. 这道题一看就知道用SPFA,但是众所周知,USACO要卡spfa,所以要用更快的算法. 单向边不构成环,双向边都是非负的,所以可以将图分成若干个连通块(内部只有 ...

  4. [USACO11JAN]Roads and Planes

    嘟嘟嘟 这道题他会卡spfa,不过据说加SLF优化后能过,但还是讲讲正解吧. 题中有很关键的一句,就是无向边都是正的,只有单向边可能会有负的.当把整个图缩点后,有向边只会连接在每一个联通块之间(因为图 ...

  5. P3008 [USACO11JAN]道路和飞机Roads and Planes

    P3008 [USACO11JAN]道路和飞机Roads and Planes Dijkstra+Tarjan 因为题目有特殊限制所以不用担心负权的问题 但是朴素的Dijkstra就算用堆优化,也显然 ...

  6. Luogu 3008 [USACO11JAN]道路和飞机Roads and Planes

    BZOJ2200 听说加上slf优化的spfa的卡过,真的不想写这些东西. 考虑使用堆优化的dij算法. 先加上所有双向边,然后dfs一下搜出所有由双向边构成的联通块,然后加上所有的单向边,一边对所有 ...

  7. 【图论】USACO07NOV Cow Relays G

    题目大意 洛谷链接 给定一张\(T\)条边的无向连通图,求从\(S\)到\(E\)经过\(N\)条边的最短路长度. 输入格式 第一行四个正整数\(N,T,S,E\),意义如题面所示. 接下来\(T\) ...

  8. 总结-一本通提高篇&算竞进阶记录

    当一个人看见星空,就再无法忍受黑暗 为了点亮渐渐沉寂的星空 不想就这样退役 一定不会鸽の坑 . 一本通提高篇 . 算竞进阶 . CDQ & 整体二分 . 平衡树 . LCT . 字符串 . 随 ...

  9. 【POJ】1419:Graph Coloring【普通图最大点独立集】【最大团】

    Graph Coloring Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5775   Accepted: 2678   ...

随机推荐

  1. kickstart半自动安装centos系统与pxe自动安装centos系统

    一.kickstart半自动安装centos系统 关闭防火墙,关闭selinux,使用system-config-kickstart生成kickstart配置文件,启动xmanger-Passive ...

  2. 感知生命周期的数据 -- LiveData

    感知生命周期的数据 -- LiveData 零. 前言 上篇文章<万物基于Lifecycle> 介绍了整个Lifecycle体系的基石,今天这篇文章咱们来看看Jetpack给我们带来的活着 ...

  3. IIS实现Nginx功能:转发

    这个标题本身是不合理的,但是基于目前公司有一份系统是外部代理商贴牌使用,有一个老的站点是部署在IIS上,好多代理商自己的域名绑定在这个上面,而近期新版本的系统已经上线,那么需要将这些域名也转发到新的站 ...

  4. [CF664A]Complicated GCD(数论)

    题目链接 http://codeforces.com/problemset/problem/664/A 题意 给两个数,找出它们的最大公因子d,使得从a到b之间的数都可以整除d. 题解 结论: 当gc ...

  5. redis部署问题

    在部署redis哨兵的时候,一开始一直都是失败:杀死master进程后,没有选出新的master 日志如下 9985:X 18 Feb 20:14:42.409 # +sdown master mym ...

  6. javaweb开发中的常见错误

    Javaweb中的最常见错误及其解决方法 1.200:表示成功处理业务. 2.400 请求出错: 由于语法格式有误,服务器无法理解此请求.不作修改,客户程序就 无法重复此请求. 解决办法:,遇到400 ...

  7. 容器云平台No.5~企业级私有镜像仓库Harbor V2.02

    镜像仓库 仓库,顾名思义,就是存放东西的地方,Docker仓库,理所当然,就是存放docker镜像的地方了. Docker仓库分公有仓库和私有仓库.共有仓库有hub.docker.com.gcr.io ...

  8. python-面向过程面向对象和栈的实现

    0x01 大纲 面向过程 函数 参数传递 返回 面向对象 类 栈的数据结构实现 0x02 例子 def add(a,b): return a+b if __name__ == '__main__': ...

  9. Token机制,session机制

    对于初学者来说,对Token和Session的使用难免会限于困境,开发过程中知道有这个东西,但却不知道为什么要用他? session机制:就是一个id号(cookie里面携带一个sessionid), ...

  10. Oracle 11gR2

    OracleOraDb11g_home1TNSListener #其它客服端连接需要开启服务,如不开启,本机连接可以直接使用sqlplus OracleServiceORCL #实例SID服务  sq ...