米勒罗宾素性测试(Miller–Rabin primality test)
如何判断一个素是素数 效率很高的筛法 打个表 (素数的倍数一定是合数) 就可以解决问题。
筛选法的效率很高,但是遇到大素数就无能为力了。
米勒罗宾素性测试是一个相当著名的判断是否是素数的算法
核心为费马小定理:
假如a是整数,p是质数,且a,p互质(即两者只有一个公约数1),那么a的(p-1)次方除以p
的余数恒等于1。
逆推一下即p的 a^(p-1)%p !=1 (0<a<p) ,它一定是合数。
如果 a^(p-1)%p ==1 (0<a<p) 则它可能是合数可能是素数。概率算法的概率就在这个 a上体现。
具体过程:
1 随机取一个 a
2 如果 它不满足 a^(n-1)%n ==1
3 则它一定是 合数
4 退出
5 如果它满足 a^(n-1)%n ==1
6 则它是一个素数的概率是1/2
7 回到 1
可以通过拉宾米勒素数测试的合数为伪素数与Carmichael(强伪素数)
Carmichael数是非常少的,在1~100000000范围内的整数中,只有255个Carmichael数。
为此有二次探测定理以确保该数为素数:
如果p是一个素数,0<x<p,则方程x^2≡1(mod p)的解为x=1,p-1
说明:
Miller-Rabin是随机算法
如果对这个过程重复100次,每次都没说它是合数,那这个数是素数的概率只有(1/2)^5100可能不是素数
米勒罗宾素性测试(Miller–Rabin primality test)的更多相关文章
- 与数论的厮守01:素数的测试——Miller Rabin
看一个数是否为质数,我们通常会用那个O(√N)的算法来做,那个算法叫试除法.然而当这个数非常大的时候,这个高增长率的时间复杂度就不够这个数跑了. 为了解决这个问题,我们先来看看费马小定理:若n为素数, ...
- Miller_Rabin (米勒-拉宾) 素性测试
之前一直对于这个神奇的素性判定方法感到痴迷而又没有时间去了解.借着学习<信息安全数学基础>将素性这一判定方法学习一遍. 首先证明一下费马小定理. 若p为素数,且gcd(a, p)=1, 则 ...
- POJ1811_Prime Test【Miller Rabin素数测试】【Pollar Rho整数分解】
Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...
- 关于素数:求不超过n的素数,素数的判定(Miller Rabin 测试)
关于素数的基本介绍请参考百度百科here和维基百科here的介绍 首先介绍几条关于素数的基本定理: 定理1:如果n不是素数,则n至少有一个( 1, sqrt(n) ]范围内的的因子 定理2:如果n不是 ...
- HDU1164_Eddy's research I【Miller Rabin素数测试】【Pollar Rho整数分解】
Eddy's research I Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- POJ1811- Prime Test(Miller–Rabin+Pollard's rho)
题目大意 给你一个非常大的整数,判断它是不是素数,如果不是则输出它的最小的因子 题解 看了一整天<初等数论及其应用>相关部分,终于把Miller–Rabin和Pollard's rho这两 ...
- 素数与素性测试(Miller-Rabin测试)
转载自Matrix大牛的博客 把代码翻译成C++ http://www.matrix67.com/blog/archives/234 题目链接: http://hihocoder.com/proble ...
- 【数学】【筛素数】Miller-Rabin素性测试 学习笔记
Miller-Rabin是一种高效的随机算法,用来检测一个数$p$是否是素数,最坏时间复杂度为$\log^3 p$,正确率约为$1-4^{-k}$,$k$是检验次数. 一.来源 Mil ...
- Miller-Rabin 素性测试 与 Pollard Rho 大整数分解
\(\\\) Miller-Rabin 素性测试 考虑如何检验一个数字是否为素数. 经典的试除法复杂度 \(O(\sqrt N)\) 适用于询问 \(N\le 10^{16}\) 的时候. 如果我们要 ...
随机推荐
- javaweb(二十六)——jsp简单标签标签库开发(二)
一.JspFragment类介绍 javax.servlet.jsp.tagext.JspFragment类是在JSP2.0中定义的,它的实例对象代表JSP页面中的一段符合JSP语法规范的JSP片段, ...
- swift实现UItableview上拉下拉刷新模块
最近用写个项目 发现上拉下拉刷新模块没找到合适的 so 自己写了一个 由于最近忙 教程就不写了 里面有 直接贴地址https://github.com/DaChengTechnology/DCRefr ...
- win10 Docker Toolbox 默认路径不能写问题
2018-8-30 这几天正学习docker,win10系统家庭版,未升级成专业版,只能安装Docker Toolbox来练习, 安装好后准备做个镜像,默认路径新建目录却提示不允许创建 由于Docke ...
- CentOS安装输入法及kDE桌面
参考教程:https://jingyan.baidu.com/article/154b46317fdfce28ca8f419e.html
- Linux权限管理命令
查询linux命令用法网址:cht.sh 1.chmod——改变文件/目录的权限 用法: ① chmod [{ugoa}{+-=}{rwx}] [文件/目录] ---给文件的(用户.所属组.其他人 ...
- mnist手写数字识别(神经网络)
import numpy as np from sklearn.neural_network import MLPClassifier path = 'mnist.npz' f = np.load(p ...
- Spring学习(1):侵入式与非侵入式,轻量级与重量级
一. 引言 在阅读spring相关资料,都会提到Spring是非侵入式编程模型,轻量级框架,那么就有必要了解下这些概念. 二. 侵入式与非侵入式 非侵入式:使用一个新的技术不会或者基本不改变原有代码结 ...
- SQL中NULL的妙用
商品表Products 库房表WarehouseDistrict 库存表WarehouseStock 一般写法 ;WITH stock AS ( SELECT DistrictId, ProductI ...
- underscore.js源码解析(二)
前几天我对underscore.js的整体结构做了分析,今天我将针对underscore封装的方法进行具体的分析,代码的一些解释都写在了注释里,那么废话不多说进入今天的正文. 没看过上一篇的可以猛戳这 ...
- Scrum立会报告+燃尽图(十一月十六日总第二十四次):功能开发与设计页面
此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2384 项目地址:https://git.coding.net/zhang ...