米勒罗宾素性测试(Miller–Rabin primality test)
如何判断一个素是素数 效率很高的筛法 打个表 (素数的倍数一定是合数) 就可以解决问题。
筛选法的效率很高,但是遇到大素数就无能为力了。
米勒罗宾素性测试是一个相当著名的判断是否是素数的算法
核心为费马小定理:
假如a是整数,p是质数,且a,p互质(即两者只有一个公约数1),那么a的(p-1)次方除以p
的余数恒等于1。
逆推一下即p的 a^(p-1)%p !=1 (0<a<p) ,它一定是合数。
如果 a^(p-1)%p ==1 (0<a<p) 则它可能是合数可能是素数。概率算法的概率就在这个 a上体现。
具体过程:
1 随机取一个 a
2 如果 它不满足 a^(n-1)%n ==1
3 则它一定是 合数
4 退出
5 如果它满足 a^(n-1)%n ==1
6 则它是一个素数的概率是1/2
7 回到 1
可以通过拉宾米勒素数测试的合数为伪素数与Carmichael(强伪素数)
Carmichael数是非常少的,在1~100000000范围内的整数中,只有255个Carmichael数。
为此有二次探测定理以确保该数为素数:
如果p是一个素数,0<x<p,则方程x^2≡1(mod p)的解为x=1,p-1
说明:
Miller-Rabin是随机算法
如果对这个过程重复100次,每次都没说它是合数,那这个数是素数的概率只有(1/2)^5100可能不是素数
米勒罗宾素性测试(Miller–Rabin primality test)的更多相关文章
- 与数论的厮守01:素数的测试——Miller Rabin
看一个数是否为质数,我们通常会用那个O(√N)的算法来做,那个算法叫试除法.然而当这个数非常大的时候,这个高增长率的时间复杂度就不够这个数跑了. 为了解决这个问题,我们先来看看费马小定理:若n为素数, ...
- Miller_Rabin (米勒-拉宾) 素性测试
之前一直对于这个神奇的素性判定方法感到痴迷而又没有时间去了解.借着学习<信息安全数学基础>将素性这一判定方法学习一遍. 首先证明一下费马小定理. 若p为素数,且gcd(a, p)=1, 则 ...
- POJ1811_Prime Test【Miller Rabin素数测试】【Pollar Rho整数分解】
Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...
- 关于素数:求不超过n的素数,素数的判定(Miller Rabin 测试)
关于素数的基本介绍请参考百度百科here和维基百科here的介绍 首先介绍几条关于素数的基本定理: 定理1:如果n不是素数,则n至少有一个( 1, sqrt(n) ]范围内的的因子 定理2:如果n不是 ...
- HDU1164_Eddy's research I【Miller Rabin素数测试】【Pollar Rho整数分解】
Eddy's research I Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- POJ1811- Prime Test(Miller–Rabin+Pollard's rho)
题目大意 给你一个非常大的整数,判断它是不是素数,如果不是则输出它的最小的因子 题解 看了一整天<初等数论及其应用>相关部分,终于把Miller–Rabin和Pollard's rho这两 ...
- 素数与素性测试(Miller-Rabin测试)
转载自Matrix大牛的博客 把代码翻译成C++ http://www.matrix67.com/blog/archives/234 题目链接: http://hihocoder.com/proble ...
- 【数学】【筛素数】Miller-Rabin素性测试 学习笔记
Miller-Rabin是一种高效的随机算法,用来检测一个数$p$是否是素数,最坏时间复杂度为$\log^3 p$,正确率约为$1-4^{-k}$,$k$是检验次数. 一.来源 Mil ...
- Miller-Rabin 素性测试 与 Pollard Rho 大整数分解
\(\\\) Miller-Rabin 素性测试 考虑如何检验一个数字是否为素数. 经典的试除法复杂度 \(O(\sqrt N)\) 适用于询问 \(N\le 10^{16}\) 的时候. 如果我们要 ...
随机推荐
- 使用SCSS扩展Bootstrap4
摘要 因为打算写一个小网站,而个人时间又不是那么充裕,所以没有选择前后端分离的架构. 对于非前后端分离应用来说,Bootstrap应该是目前的最佳前端框架之一了. 而Bootstrap4,是Boots ...
- Python小白学习之函数装饰器
装饰器 2018-10-25 13:49:37 装饰器从字面意思就是用来装饰的,在函数可以理解为:在函数中,我们不想影响原来的函数功能,又想给函数添加新的功能,这时候我们就用到了装饰器. 一般函数操作 ...
- 接口自动化之接口工具选取(jmeter)
jmeter进行接口测试,网上简易教程很多 其实关于HTTP接口测试的实现,网上还有很多其他工具诸如:http在线请求测试/谷歌插件postman/火狐插件等. 至于选择jmeter的原因,其实没有原 ...
- localhost/127.0.0.1/本机IP的区别以及端口号
端口号: http请求默认的端口是:80 PHPstudy中的端口号: Apache服务器的端口是:80 MySQL数据库的端口是:3306 PHP项目端口是:9000 禅道中的端口号: Apache ...
- Javascript深入__proto__和prototype的区别和联系
有一个一个装逼的同事,写了一段代码 function a(){} a.__proto__.__proto__.__proto__ 然后问我,下面这个玩意a.__proto__.__proto__.__ ...
- winform圆角窗体实现
winform圆角窗体实现 1.窗体的FormBorderStyle设置成None,不要控制边框 2.TransparencyKey和BackColor颜色设置成相同的,这样,窗体就透明了 3.以此为 ...
- HttpServlet 详解(基础)
HttpServlet详解 大家都知道Servlet,但是不一定很清楚servlet框架,这个框架是由两个Java包组成:javax.servlet和javax.servlet.http. 在java ...
- VR产业链全景图
- lintcode-223-回文链表
223-回文链表 设计一种方式检查一个链表是否为回文链表. 样例 1->2->1 就是一个回文链表. 挑战 O(n)的时间和O(1)的额外空间. 标签 链表 思路 找到链表中点后,翻转链表 ...
- .NET中的堆(Heap)和栈(Stack)的本质
计算机的内存可以分为代码块内存,Stack内存和Heap内存.代码块内存是在加载程序时存放程序机器代码的地方. 栈(Stack)一般存放函数内的局部变量. 堆(Heap)一般存放全局变量和类对象实例等 ...