如何判断一个素是素数 效率很高的筛法 打个表 (素数的倍数一定是合数) 就可以解决问题。

筛选法的效率很高,但是遇到大素数就无能为力了。

米勒罗宾素性测试是一个相当著名的判断是否是素数的算法

核心为费马小定理:

假如a是整数,p是质数,且a,p互质(即两者只有一个公约数1),那么a的(p-1)次方除以p

的余数恒等于1。

逆推一下即p的 a^(p-1)%p !=1 (0<a<p) ,它一定是合数。

如果 a^(p-1)%p ==1 (0<a<p) 则它可能是合数可能是素数。概率算法的概率就在这个 a上体现。

具体过程:

1 随机取一个 a

2 如果 它不满足 a^(n-1)%n ==1

3 则它一定是 合数

4 退出

5 如果它满足 a^(n-1)%n ==1

6  则它是一个素数的概率是1/2

7 回到 1



可以通过拉宾米勒素数测试的合数为伪素数与Carmichael(强伪素数)

Carmichael数是非常少的,在1~100000000范围内的整数中,只有255个Carmichael数。

为此有二次探测定理以确保该数为素数:

如果p是一个素数,0<x<p,则方程x^2≡1(mod p)的解为x=1,p-1

说明:

Miller-Rabin是随机算法

如果对这个过程重复100次,每次都没说它是合数,那这个数是素数的概率只有(1/2)^5100可能不是素数

米勒罗宾素性测试(Miller–Rabin primality test)的更多相关文章

  1. 与数论的厮守01:素数的测试——Miller Rabin

    看一个数是否为质数,我们通常会用那个O(√N)的算法来做,那个算法叫试除法.然而当这个数非常大的时候,这个高增长率的时间复杂度就不够这个数跑了. 为了解决这个问题,我们先来看看费马小定理:若n为素数, ...

  2. Miller_Rabin (米勒-拉宾) 素性测试

    之前一直对于这个神奇的素性判定方法感到痴迷而又没有时间去了解.借着学习<信息安全数学基础>将素性这一判定方法学习一遍. 首先证明一下费马小定理. 若p为素数,且gcd(a, p)=1, 则 ...

  3. POJ1811_Prime Test【Miller Rabin素数测试】【Pollar Rho整数分解】

    Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...

  4. 关于素数:求不超过n的素数,素数的判定(Miller Rabin 测试)

    关于素数的基本介绍请参考百度百科here和维基百科here的介绍 首先介绍几条关于素数的基本定理: 定理1:如果n不是素数,则n至少有一个( 1, sqrt(n) ]范围内的的因子 定理2:如果n不是 ...

  5. HDU1164_Eddy&#39;s research I【Miller Rabin素数测试】【Pollar Rho整数分解】

    Eddy's research I Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  6. POJ1811- Prime Test(Miller–Rabin+Pollard's rho)

    题目大意 给你一个非常大的整数,判断它是不是素数,如果不是则输出它的最小的因子 题解 看了一整天<初等数论及其应用>相关部分,终于把Miller–Rabin和Pollard's rho这两 ...

  7. 素数与素性测试(Miller-Rabin测试)

    转载自Matrix大牛的博客 把代码翻译成C++ http://www.matrix67.com/blog/archives/234 题目链接: http://hihocoder.com/proble ...

  8. 【数学】【筛素数】Miller-Rabin素性测试 学习笔记

        Miller-Rabin是一种高效的随机算法,用来检测一个数$p$是否是素数,最坏时间复杂度为$\log^3 p$,正确率约为$1-4^{-k}$,$k$是检验次数. 一.来源     Mil ...

  9. Miller-Rabin 素性测试 与 Pollard Rho 大整数分解

    \(\\\) Miller-Rabin 素性测试 考虑如何检验一个数字是否为素数. 经典的试除法复杂度 \(O(\sqrt N)\) 适用于询问 \(N\le 10^{16}\) 的时候. 如果我们要 ...

随机推荐

  1. 从源码角度彻底理解ReentrantLock(重入锁)

    目录 1.前言 2.AbstractQueuedSynchronizer介绍 2.1 AQS是构建同步组件的基础 2.2 AQS的内部结构(ReentrantLock的语境下) 3 非公平模式加锁流程 ...

  2. Phaser Matter Collision Plugin 碰撞插件 -- iFiero技术分享

    collision-simple-demo Phaser 自带的Arcade虽然易用,但复杂的物理碰撞明显就不够用了,于是Matter等物理引擎还是不得不学的,以下是Matter物理体碰撞的一个插件, ...

  3. OpenLDAP备份和恢复

    OpenLDAP中数据备份一般分为二种: 1)通过slapcat 指令进行备份 2)通过phpLDAPadmin控制台进行备份 备份方式1: 1)slapcat -v -l openldap-back ...

  4. shell基础 -- 基本语法

    本文介绍一下 shell 的语法. 一.变量 在 shell 里,使用变量之前通常并不需要事先为他们做出声明,需要使用的时候直接创建就行了.默认情况下,所有变量都被看做字符串并以字符串来存储,即使它们 ...

  5. Paper Reading - Mind’s Eye: A Recurrent Visual Representation for Image Caption Generation ( CVPR 2015 )

    Link of the Paper: https://ieeexplore.ieee.org/document/7298856/ A Correlative Paper: Learning a Rec ...

  6. mac 的一些使用技巧

    1. mac有一个自带的服务器环境, 目录路径 /Library/WebServer/Documents 打开终端  a. 启动 sudo apachectl start b. 重新启动 sudo a ...

  7. 由A到D中间可不止“B、C”

    在电子信息系统的学习中,我们或许早就被告知现实世界是模拟的,而数字化的模拟世界则越来越展现更多的风采.但是所谓的数字和模拟只是相对的而已,你可以把模拟量当做无穷数字量的组合,也可以把数字量当做具有不同 ...

  8. 【java】中缀表达式转后缀表达式 java实现

    算法: 中缀表达式转后缀表达式的方法:1.遇到操作数:直接输出(添加到后缀表达式中)2.栈为空时,遇到运算符,直接入栈3.遇到左括号:将其入栈4.遇到右括号:执行出栈操作,并将出栈的元素输出,直到弹出 ...

  9. 01慕课网《vue.js2.5入门》——基础知识

    前端框架 Vue.js2.5 2018-05-12 Vue官网:https://cn.vuejs.org/ 基础语法+案例实践+TodoList+Vue-cli构建工具+TodoList Vue基础语 ...

  10. .net web 应用程序C#

    简介 开发环境:VS2015 ASP.NET:可以开发出几乎所有运行在Windows上的应用程序:.NET是一种架构,一种新的API:引入程序集代替DLL: ADO.NET:一组.NET组件提供对数据 ...