洛谷P2523 [HAOI2011]Problem c(计数dp)
题面
题解
首先,显然一个人实际位置只可能大于或等于编号
先考虑无解的情况
对于编号为\(i\),如果确认的人编号在\([i,n]\)中数量大于区间长度,那么就无解
记\(S[i]\)表示确认的人编号在\([i,n]\)中数量
我们只要考虑剩下的\(n - m\)人
\(f[i][j]\)表示编号\(>=i\)的,已经确认了\(j\)人
那么我们枚举多少人编号为\(i\)
\(f[i][j] = \sum f[i + 1][j - k] * (^j_k)\)
因为交换一些人的编号也是可行方案,所以乘上一个组合数
Code
#include<bits/stdc++.h>
#define LL long long
#define RG register
using namespace std;
template<class T> inline void read(T &x) {
x = 0; RG char c = getchar(); bool f = 0;
while (c != '-' && (c < '0' || c > '9')) c = getchar(); if (c == '-') c = getchar(), f = 1;
while (c >= '0' && c <= '9') x = x*10+c-48, c = getchar();
x = f ? -x : x;
return ;
}
template<class T> inline void write(T x) {
if (!x) {putchar(48);return ;}
if (x < 0) x = -x, putchar('-');
int len = -1, z[20]; while (x > 0) z[++len] = x%10, x /= 10;
for (RG int i = len; i >= 0; i--) putchar(z[i]+48);return ;
}
const int N = 310;
int n, m, Mod, s[N], f[N][N], C[N][N];
void pls(int &x, int y) {
x += y;
if (x >= Mod) x -= Mod;
}
void solve() {
read(n), read(m), read(Mod);
for (int i = 0; i <= 300; i++) C[i][0] = C[i][i] = 1;
for (int i = 2; i <= 300; i++)
for (int j = 1; j < i; j++)
C[i][j] = (C[i - 1][j - 1] + C[i - 1][j]) % Mod;
memset(s, 0, sizeof(s));
for (int i = 1, x; i <= m; i++) read(x), read(x), s[x]++;
for (int i = n; i; i--) s[i] += s[i + 1];
bool flag = 0;
for (int i = 1; i <= n; i++)
if (s[i] > n - i + 1) {
flag = 1;
break;
}
if (flag) {
puts("NO");
return ;
}
memset(f, 0, sizeof(f));
f[n + 1][0] = 1;
for (int i = n; i; i--)
for (int j = 0; j <= n - i + 1 - s[i]; j++)
for (int k = 0; k <= j; k++)
pls(f[i][j], 1ll * f[i + 1][j - k] * C[j][k] % Mod);
printf("YES %d\n", f[1][n - m]);
return ;
}
int main() {
int T;
read(T);
while (T--) solve();
return 0;
}
洛谷P2523 [HAOI2011]Problem c(计数dp)的更多相关文章
- 洛谷 P2523 [HAOI2011]Problem c
洛谷1或洛谷2,它们是一样的题目,手动滑稽- 这一题我是想不出来, 但是我想吐槽一下坐我左边的大佬. 大佬做题的时候,只是想了几分钟,拍了拍大腿,干脆的道:"这不是很显然吗!" 然 ...
- 洛谷$P2523\ [HAOI2011]\ Problem\ c$ $dp$
正解:$dp$ 解题报告: 传送门$QwQ$ 首先港下不合法的情况.设$sum_i$表示$q\geq i$的人数,当且仅当$sum_i>n-i+1$时无解. 欧克然后考虑这题咋做$QwQ$. 一 ...
- 洛谷P2522 - [HAOI2011]Problem b
Portal Description 进行\(T(T\leq10^5)\)次询问,每次给出\(x_1,x_2,y_1,y_2\)和\(d\)(均不超过\(10^5\)),求\(\sum_{i=x_1} ...
- 洛谷P2522 [HAOI2011]Problem b(莫比乌斯反演)
传送门 我们考虑容斥,设$ans(a,b)=\sum_{i=1}^a\sum_{j=1}^b[gcd(a,b)==k]$,这个东西可以和这一题一样去算洛谷P3455 [POI2007]ZAP-Quer ...
- 洛谷P2522 [HAOI2011]Problem b (莫比乌斯反演+容斥)
题意:求$\sum_{i=a}^{b}\sum_{j=c}^{d}[gcd(i,j)==k]$(1<=a,b,c,d,k<=50000). 是洛谷P3455 [POI2007]ZAP-Qu ...
- 洛谷 P2519 [HAOI2011]problem a
传送门 考虑转化为求最多说真话的人数 设$f(i)$表示排名前$i$的人中最多说真话的人的数量,考虑转移,如果由$j$转移而来,可以设$[j,i]$之间的人全都分数相等,那么式子就是$f[i]=f[j ...
- 洛谷P2522 [HAOI2011]Problem b(莫比乌斯反演)
题目描述 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 输入输出格式 输入格式: 第一行一个整数 ...
- 洛谷 P2522 [HAOI2011]Problem b (莫比乌斯反演+简单容斥)
题目描述 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 输入输出格式 输入格式: 第一行一个整数 ...
- 洛谷P2507 [SCOI2008]配对 题解(dp+贪心)
洛谷P2507 [SCOI2008]配对 题解(dp+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1299251 链接题目地址:洛谷P2507 [S ...
随机推荐
- genymotion的安装
1.安装virtualBox google的模拟器是运行在qemu上面的. genymotion这个模拟器运行在virtualBox上面.
- 09 Finding a Motif in DNA
Problem Given two strings ss and tt, tt is a substring of ss if tt is contained as a contiguous coll ...
- 如何在centos环境下搭建java环境
在CentOS上安装Java环境:[1]使用yum安装java 现阶段做企业级项目开发一般都采用Java语言.开发的项目需要放在服务器上运行测试,若以CentOS系统为服务器系统,首先要解决就是Cen ...
- jquery中prop()和attr()的区别
相比attr,prop是1.6.1才新出来的,两者从中文意思理解,都是获取/设置属性的方法(attributes和properties).只是,window或document中使用.attr()方法在 ...
- eclipse find 两位数
查找两位数
- Exception in thread "main" java.lang.Error: Unresolved compilation problem
初学java,使用eclipse编译时,可能会遇到如下图所示的编译错误(Exception in thread "main" java.lang.Error: Unresolved ...
- 疯狂JAVA讲义---第十五章:输入输出(上)流的处理和文件
在Java中,把这些不同类型的输入.输出抽象为流(Stream),而其中输入或输出的数据称为数据流(Data Stream),用统一的接口来表示,从而使程序设计简单明了. 首先我要声明下:所谓的输入输 ...
- .Net C# 阿拉伯数字转为中文金额数字
一个练习,将阿拉伯数字转为中文金额数字,针对包含整数的金额有问题 代码: public string ReturnStr(string inputNum) { ", }; string[] ...
- 大咖分享 | 一文解锁首届云创大会干货——下篇(文末附演讲ppt文件免费下载)
本文承接上一篇:大咖分享 | 一文解锁首届云创大会干货--上篇(文末附演讲ppt文件免费下载),第一届云创大会留下干货太多,这里追加下篇,同样,文末提供大咖们的干货分享,点击附件可免费下载. ...
- Android学习之Adapter(数据适配器)
1.定义 数据适配器是AdapterView视图(如ListView - 列表视图控件.Gallery - 缩略图浏览器控件.GridView - 网格控件.Spinner - 下拉列表控件. ...