题面

luogu

题解

首先,显然一个人实际位置只可能大于或等于编号

先考虑无解的情况

对于编号为\(i\),如果确认的人编号在\([i,n]\)中数量大于区间长度,那么就无解

记\(S[i]\)表示确认的人编号在\([i,n]\)中数量

我们只要考虑剩下的\(n - m\)人

\(f[i][j]\)表示编号\(>=i\)的,已经确认了\(j\)人

那么我们枚举多少人编号为\(i\)

\(f[i][j] = \sum f[i + 1][j - k] * (^j_k)\)

因为交换一些人的编号也是可行方案,所以乘上一个组合数

Code

#include<bits/stdc++.h>

#define LL long long
#define RG register using namespace std;
template<class T> inline void read(T &x) {
x = 0; RG char c = getchar(); bool f = 0;
while (c != '-' && (c < '0' || c > '9')) c = getchar(); if (c == '-') c = getchar(), f = 1;
while (c >= '0' && c <= '9') x = x*10+c-48, c = getchar();
x = f ? -x : x;
return ;
}
template<class T> inline void write(T x) {
if (!x) {putchar(48);return ;}
if (x < 0) x = -x, putchar('-');
int len = -1, z[20]; while (x > 0) z[++len] = x%10, x /= 10;
for (RG int i = len; i >= 0; i--) putchar(z[i]+48);return ;
} const int N = 310; int n, m, Mod, s[N], f[N][N], C[N][N];
void pls(int &x, int y) {
x += y;
if (x >= Mod) x -= Mod;
}
void solve() {
read(n), read(m), read(Mod);
for (int i = 0; i <= 300; i++) C[i][0] = C[i][i] = 1;
for (int i = 2; i <= 300; i++)
for (int j = 1; j < i; j++)
C[i][j] = (C[i - 1][j - 1] + C[i - 1][j]) % Mod;
memset(s, 0, sizeof(s));
for (int i = 1, x; i <= m; i++) read(x), read(x), s[x]++;
for (int i = n; i; i--) s[i] += s[i + 1];
bool flag = 0;
for (int i = 1; i <= n; i++)
if (s[i] > n - i + 1) {
flag = 1;
break;
}
if (flag) {
puts("NO");
return ;
}
memset(f, 0, sizeof(f));
f[n + 1][0] = 1;
for (int i = n; i; i--)
for (int j = 0; j <= n - i + 1 - s[i]; j++)
for (int k = 0; k <= j; k++)
pls(f[i][j], 1ll * f[i + 1][j - k] * C[j][k] % Mod);
printf("YES %d\n", f[1][n - m]);
return ;
} int main() {
int T;
read(T);
while (T--) solve();
return 0;
}

洛谷P2523 [HAOI2011]Problem c(计数dp)的更多相关文章

  1. 洛谷 P2523 [HAOI2011]Problem c

    洛谷1或洛谷2,它们是一样的题目,手动滑稽- 这一题我是想不出来, 但是我想吐槽一下坐我左边的大佬. 大佬做题的时候,只是想了几分钟,拍了拍大腿,干脆的道:"这不是很显然吗!" 然 ...

  2. 洛谷$P2523\ [HAOI2011]\ Problem\ c$ $dp$

    正解:$dp$ 解题报告: 传送门$QwQ$ 首先港下不合法的情况.设$sum_i$表示$q\geq i$的人数,当且仅当$sum_i>n-i+1$时无解. 欧克然后考虑这题咋做$QwQ$. 一 ...

  3. 洛谷P2522 - [HAOI2011]Problem b

    Portal Description 进行\(T(T\leq10^5)\)次询问,每次给出\(x_1,x_2,y_1,y_2\)和\(d\)(均不超过\(10^5\)),求\(\sum_{i=x_1} ...

  4. 洛谷P2522 [HAOI2011]Problem b(莫比乌斯反演)

    传送门 我们考虑容斥,设$ans(a,b)=\sum_{i=1}^a\sum_{j=1}^b[gcd(a,b)==k]$,这个东西可以和这一题一样去算洛谷P3455 [POI2007]ZAP-Quer ...

  5. 洛谷P2522 [HAOI2011]Problem b (莫比乌斯反演+容斥)

    题意:求$\sum_{i=a}^{b}\sum_{j=c}^{d}[gcd(i,j)==k]$(1<=a,b,c,d,k<=50000). 是洛谷P3455 [POI2007]ZAP-Qu ...

  6. 洛谷 P2519 [HAOI2011]problem a

    传送门 考虑转化为求最多说真话的人数 设$f(i)$表示排名前$i$的人中最多说真话的人的数量,考虑转移,如果由$j$转移而来,可以设$[j,i]$之间的人全都分数相等,那么式子就是$f[i]=f[j ...

  7. 洛谷P2522 [HAOI2011]Problem b(莫比乌斯反演)

    题目描述 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 输入输出格式 输入格式: 第一行一个整数 ...

  8. 洛谷 P2522 [HAOI2011]Problem b (莫比乌斯反演+简单容斥)

    题目描述 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 输入输出格式 输入格式: 第一行一个整数 ...

  9. 洛谷P2507 [SCOI2008]配对 题解(dp+贪心)

    洛谷P2507 [SCOI2008]配对 题解(dp+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1299251 链接题目地址:洛谷P2507 [S ...

随机推荐

  1. ubuntu 卡在登陆界面无法进入桌面,但是可以进入命令行界面

    ubuntu 卡在登陆界面无法进入桌面,但是可以进入命令行界面(初步断定是Xwindows界面软件出问题了,所以重装即可!)Solve: 1.Ctrl+Alt+F1进入命令行界面,root账户登陆2. ...

  2. [Selenium]通过JavaScript来对隐藏的元素执行操作

    对不可见元素进行操作时,如果通过普通的方式不可行,可以尝试用Javascript Scroll hidden element into view ((JavascriptExecutor) drive ...

  3. Text Relatives

    [Text Relatives] With TextKit the resources at your disposal range from framework objects—such as te ...

  4. java集成支付宝移动快捷支付时报错java.security.spec.InvalidKeySpecException: java.security.InvalidKeyException: IOException : algid parse error, not a sequence

    出错原因是代码中的私钥设置错误,不是填原始的私钥,而是转换为PKCS8格式的私钥(Java格式的) ,改成后就会报创建交易异常了

  5. C++11新标准学习

    <深入理解C++11:C++11新特性解析与应用> <华章科技:深入理解C++11:C++11新特性解析与应用>一共8章:第1章从设计思维和应用范畴两个维度对C++11新标准中 ...

  6. ZSTU4269 买iphone 2017-03-22 14:31 73人阅读 评论(0) 收藏

    4269: 买iphone Time Limit: 3 Sec  Memory Limit: 128 MB Submit: 1710  Solved: 316 Description 自从上次仓鼠中了 ...

  7. 使用Intellij Idea连接Team Foundation Server (TFS)实现代码版本管理

    Intellij Idea是一个Java项目开发工具,支持Windows,MAC OS和Linux的跨平台开发环境,具备良好和智能的用户界面,在欧洲市场拥有很多粉丝.https://www.jetbr ...

  8. 2.C#WebAPI设置路由和参数1

    1.当我们创建WebApi的时候我们的项目下的Contorls文件夹下的ValuesController文件下会出现这么几个方法: // GET http://程序ip:程序端口/api/values ...

  9. 日笔记--C# 从数据库取表格到DataGridView---json传输

    只作为个人学习笔记. class OpData { // 创建一个和客户端通信的套接字 Socket socketwatch = null; //连接Access字符串 string strCon; ...

  10. C# 多线程task

    1.异步和多线程的区别?没什么太大区别.异步是目的,使用多线程实现.想想AJAX异步加载,不就是不想让浏览器界面卡住嘛,所以在程序中对于某些单独的操作,比如写日志,我们不想等它完成后再执行其它操作(因 ...