内容

  • 背景
  • 准备
  • 实践
  • 结果
  • 总结
  • 引用

背景

老规矩,先上代码吧

代码所在: https://github.com/BruceDone/darknet_demo

最近在做深度学习相关的项目的时候,了解在现有的深度学习检测流派里面有one-stage ,two stage 两种流派,one-stage流派中yolo模型十分的抢眼

OK,在进一步了解了yolo模型之后,发现不仅有提供速度非快的yolo v3 tiny 版本,而且准确率也非常高,顿时想起了之前在上一篇Tensorflow破解验证码只是做了一些简单的分类任务,还没有正式接触过物体检测的任务,这一次项目刚好可以拿过来测试一下自己工程能力,比如网易验证码之类的

如图很轻松将这些字符框出来,然后在进一步的做分类和识别就很容易了

准备

实践

安装环境

将cuda ,等环境安装好,本次将使用gpu训练,将darknet clone到本地

编译框架

进入darknet文件夹,修改Makefile

GPU=0  #如果使用GPU改为1
CUDNN=0 #如果使用CUDNN改为1
OPENCV=0 #opencv就不用使用了,下面两个一样
OPENMP=0
DEBUG=0
......
C=gcc
CPP=g++
NVCC=nvcc #这里如果编译报错,可以换成全路径

使用命令make ,得到二进制的文件darknet,训练框架已经准备好了

修改配置

这里重点修改cfg/yolov3-tiny.cfg 文件,本次的模型文件选用小版本的,这样训练速度快,而且识别速度也够快,应对本次的验证码定位完全够了,本次的任务是定位任务,所以分类看来只有一类:文字,这里我们需要修改 配置文件中的几项

Line 3: set batch=24 → using 24 images for every training step
Line 4: set subdivisions=8 → the batch will be divided by 8
Line 127: set filters=(classes + 5)*3 → in our case filters=18
Line 135: set classes=1 → the number of categories we want to detect
Line 171: set filters=(classes + 5)*3 → in our case filters=18
Line 177: set classes=1 → the number of categories we want to detect

至于为什么fliters = (classes + 5) * 3 ,参考 yolov3 paper: https://pjreddie.com/media/files/papers/YOLOv3.pdf 第2.3节的内容

准备数据

我自己使用selenium的google driver 下载了很多图片,接下来就是标注数据了

下载并编译labelimage工具 : https://github.com/tzutalin/labelImg ,安装完成后如图开始进行苦逼的标注工作

因为我们这里只有一类内容,所有只有一类框,大概准备了500张训练数据,120张验证数据,将原始的图片文件夹imgs,和label 文件夹准备好,使用代码data.py 生在训练能使用的txt训练文件配置,另外会将label出的xml 文件以规整的形式在图片文件生成同名的标注文件(darknet的训练就是这么定义的)

准备配置

在./weights 文件夹下使用使用 darknet53.sh 文件下载我们的预训练的权重文件,进入data 文件夹,我们准备如下文件

  • train.txt – 训练数据文件,由data.py产生
  • char.names – 类别配置文件
  • val.txt – 验证数据文件
  • train.data – 训练配置表

开始训练

进入darknet 文件夹,使用 命令

./darknet detector train data/train.data cfg/train.cfg weights/darknet53.conv.74 -gpus 1,2,3,4,5,6
1

使用gpu进行并行训练,一般来说我们看到训练的loss 达到0.6左右就可以停止了

结果

使用命令

./darknetdetector test train/train.data cfg/train.cfg session/train_final.weights test_imgs/1.jpg -thresh 0.5 -gpus 0

验证我们训练好的模型,我们可以看到darknet 文件夹里面会产生一个名为 predictions.jpg 的文件,这就是我们验证出来的结果文件,我自己这边手动测试了几好张,效果都还不错





到这里我们只是介绍了如何使用深度学习的模型去定位我们要的文字(或者说框),接下来我们可以crop出来我们的文字,然后送到检测(分类)网络里面,关于分类的网络,看下期有时间就进一步做了(有数据增强的彩蛋)

引用

[深度学习] 使用Darknet YOLO 模型破解中文验证码点击识别的更多相关文章

  1. 深度学习实战篇-基于RNN的中文分词探索

    深度学习实战篇-基于RNN的中文分词探索 近年来,深度学习在人工智能的多个领域取得了显著成绩.微软使用的152层深度神经网络在ImageNet的比赛上斩获多项第一,同时在图像识别中超过了人类的识别水平 ...

  2. zz深度学习中的注意力模型

    中间表示: C -> C1.C2.C3 i:target -> IT j: source -> JS sim(Query, Key) -> Value Key:h_j,类似某种 ...

  3. 时间序列深度学习:状态 LSTM 模型预测太阳黑子

    目录 时间序列深度学习:状态 LSTM 模型预测太阳黑子 教程概览 商业应用 长短期记忆(LSTM)模型 太阳黑子数据集 构建 LSTM 模型预测太阳黑子 1 若干相关包 2 数据 3 探索性数据分析 ...

  4. 学习《TensorFlow实战Google深度学习框架 (第2版) 》中文PDF和代码

    TensorFlow是谷歌2015年开源的主流深度学习框架,目前已得到广泛应用.<TensorFlow:实战Google深度学习框架(第2版)>为TensorFlow入门参考书,帮助快速. ...

  5. 深度学习中的序列模型演变及学习笔记(含RNN/LSTM/GRU/Seq2Seq/Attention机制)

    [说在前面]本人博客新手一枚,象牙塔的老白,职业场的小白.以下内容仅为个人见解,欢迎批评指正,不喜勿喷![认真看图][认真看图] [补充说明]深度学习中的序列模型已经广泛应用于自然语言处理(例如机器翻 ...

  6. 深度学习教程 | Seq2Seq序列模型和注意力机制

    作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/35 本文地址:http://www.showmeai.tech/article-det ...

  7. 时间序列深度学习:状态 LSTM 模型预測太阳黑子(一)

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/kMD8d5R/article/details/82111558 作者:徐瑞龙,量化分析师,R语言中文 ...

  8. 深度学习中的Normalization模型

    Batch Normalization(简称 BN)自从提出之后,因为效果特别好,很快被作为深度学习的标准工具应用在了各种场合.BN 大法虽然好,但是也存在一些局限和问题,诸如当 BatchSize ...

  9. [优化]深度学习中的 Normalization 模型

    来源:https://www.chainnews.com/articles/504060702149.htm 机器之心专栏 作者:张俊林 Batch Normalization (简称 BN)自从提出 ...

随机推荐

  1. 【node】安装

    参考链接: http://www.runoob.com/nodejs/nodejs-install-setup.html http://blog.csdn.net/u010255310/article ...

  2. seek()和tell()在文件里转移

    Seek()方法允许在输入和输出流移动到任意的位置,seek()有好几种形式.包含:seekp() 方法和seekg()方法,p是put的意思,g是get的意思:其中输入流里用seekg()函数,输出 ...

  3. keepalived 的进程/usr/sbin/keepalived -D 只有2个

    操作系统:openSUSE 11.3 (x86_64) /usr/sbin/keepalived -D  只有2条 日志:ls  /var/log/messages* -lrth Can't init ...

  4. DataFrame查找

    一 通过索引取数据 (ix/loc/iloc) loc (根据索引名称取数据 , 适合多列) iloc (根据索引序号取数据,   适合多列) at  (和loc类似,只用于取单列, 性能更好) ia ...

  5. Python 学习笔记(十四)Python类(二)

    创建简单的类 新式类和经典类(旧式类) Python 2.x中默认都是经典类,只有显式继承了object才是新式类 Python 3.x中默认都是新式类,经典类被移除,不必显式的继承object 新式 ...

  6. L2-006 树的遍历 (后序中序求层序)

    题目: 给定一棵二叉树的后序遍历和中序遍历,请你输出其层序遍历的序列.这里假设键值都是互不相等的正整数. 输入格式: 输入第一行给出一个正整数N(≤30),是二叉树中结点的个数.第二行给出其后序遍历序 ...

  7. cmd命令操作Mysql数据库

    在一次考试中,笔者因考试的电脑上没有安装操作Mysql数据库的可视化工具而不知如何操作数据库,所以在这里可以提醒各位掌握 命令行来操作数据库也是非常重要的. 笔者以惨痛的教训来警惕大家. 进入正题: ...

  8. 浅谈OSI七层网络模型和TCP/IP四层模型

    OSI七层网络模型 OSI(Open System Interconnection)开放系统互连参考模型是国际标准化组织(ISO)制定的一个用于计算机或通信系统间互联的标准体系. OSI七层模型 功能 ...

  9. Docker学习系列(一)-CentOS7下安装Docker

    CentOS7下Docker的安装 一.操作系统要求 CentOS 7 64位 Kernel 3.10+ 本机系统信息 二.卸载旧版本 如果之前安排过旧版本的Docker,先卸载掉旧版Docker以及 ...

  10. Android开发 使用HBuilder的缓存方法

    /* * 中间就可以进行封装操作 * mui就代表mui,owner就代表window的app属性,就是一个传值 */ (function(mui,owner) { /** * 获取当前状态 **/ ...