题目链接:

http://codeforces.com/problemset/problem/8/C

C. Looking for Order

time limit per test:4 seconds
memory limit per test:512 megabytes
#### 问题描述
> Girl Lena likes it when everything is in order, and looks for order everywhere. Once she was getting ready for the University and noticed that the room was in a mess — all the objects from her handbag were thrown about the room. Of course, she wanted to put them back into her handbag. The problem is that the girl cannot carry more than two objects at a time, and cannot move the handbag. Also, if he has taken an object, she cannot put it anywhere except her handbag — her inherent sense of order does not let her do so.
>
> You are given the coordinates of the handbag and the coordinates of the objects in some Сartesian coordinate system. It is known that the girl covers the distance between any two objects in the time equal to the squared length of the segment between the points of the objects. It is also known that initially the coordinates of the girl and the handbag are the same. You are asked to find such an order of actions, that the girl can put all the objects back into her handbag in a minimum time period.

输入

The first line of the input file contains the handbag's coordinates xs, ys. The second line contains number n (1 ≤ n ≤ 24) — the amount of objects the girl has. The following n lines contain the objects' coordinates. All the coordinates do not exceed 100 in absolute value. All the given positions are different. All the numbers are integer.

输出

In the first line output the only number — the minimum time the girl needs to put the objects into her handbag.

In the second line output the possible optimum way for Lena. Each object in the input is described by its index number (from 1 to n), the handbag's point is described by number 0. The path should start and end in the handbag's point. If there are several optimal paths, print any of them.

样例输入

1 1

3

4 3

3 4

0 0

样例输出

32

0 1 2 0 3 0

题意

给你垃圾桶的位置和垃圾的位置,你每次能从垃圾桶出发捡一到两个垃圾然后回到垃圾桶,问如何规划使得捡垃圾所花时间最短(时间是以两点距离平方为基准)

题解

状压dp,有点像最优顶点配对问题的算法来处理,时间复杂度为n*2^n。

代码

#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<ctime>
#include<vector>
#include<cstdio>
#include<string>
#include<bitset>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
using namespace std;
#define X first
#define Y second
#define mkp make_pair
#define lson (o<<1)
#define rson ((o<<1)|1)
#define mid (l+(r-l)/2)
#define sz() size()
#define pb(v) push_back(v)
#define all(o) (o).begin(),(o).end()
#define clr(a,v) memset(a,v,sizeof(a))
#define bug(a) cout<<#a<<" = "<<a<<endl
#define rep(i,a,b) for(int i=a;i<(b);i++)
#define scf scanf
#define prf printf typedef long long LL;
typedef vector<int> VI;
typedef pair<int,int> PII;
typedef vector<pair<int,int> > VPII; const int INF=0x3f3f3f3f;
const LL INFL=0x3f3f3f3f3f3f3f3fLL;
const double eps=1e-8;
const double PI = acos(-1.0); //start---------------------------------------------------------------------- const int maxn=24; int dp[1<<maxn],n;
int pre[1<<maxn];
struct Node{
int a,b;
bool type;
}nds[1<<maxn]; PII pt[maxn]; int dis(int i,int j){
int a=pt[i].X-pt[j].X;
int b=pt[i].Y-pt[j].Y;
return a*a+b*b;
} int main() {
scf("%d%d",&pt[0].X,&pt[0].Y);
scf("%d",&n);
for(int i=1;i<=n;i++){
scf("%d%d",&pt[i].X,&pt[i].Y);
} clr(dp,0x7f);
dp[0]=0;
clr(pre,-1);
for(int stat=1;stat<(1<<n);stat++){
for(int i=0;i<n;i++){
if(stat&(1<<i)){
///第一个单独不匹配
if(dp[stat]>dp[stat^(1<<i)]+2*dis(0,i+1)){
dp[stat]=dp[stat^(1<<i)]+2*dis(0,i+1);
pre[stat]=stat^(1<<i);
nds[stat].a=i+1;
nds[stat].type=0;
}
dp[stat]=min(dp[stat],dp[stat^(1<<i)]+2*dis(0,i+1)); ///第一个和后面的某一个匹配
for(int j=0;j<n;j++){
if(j!=i&&stat&(1<<j)){
int tmp=dp[stat^(1<<i)^(1<<j)]+dis(0,i+1)+dis(i+1,j+1)+dis(0,j+1);
if(dp[stat]>tmp){
dp[stat]=tmp;
pre[stat]=stat^(1<<i)^(1<<j);
nds[stat].a=i+1; nds[stat].b=j+1;
nds[stat].type=1;
}
}
}
//这个减枝非常关键!和最优顶点配对的做法一样
break;
}
}
} VI ans;
ans.pb(0);
int p=(1<<n)-1;
while(p!=0){
if(nds[p].type==0){
ans.pb(nds[p].a);
}else{
ans.pb(nds[p].a);
ans.pb(nds[p].b);
}
ans.pb(0);
p=pre[p];
}
reverse(all(ans));
prf("%d\n",dp[(1<<n)-1]); rep(i,0,ans.sz()-1) prf("%d ",ans[i]);
prf("%d\n",ans[ans.sz()-1]); return 0;
} //end-----------------------------------------------------------------------

Codeforces Beta Round #8 C. Looking for Order 状压dp的更多相关文章

  1. Codeforces Beta Round #8 C. Looking for Order 状压

    C. Looking for Order 题目连接: http://www.codeforces.com/contest/8/problem/C Description Girl Lena likes ...

  2. Educational Codeforces Round 13 E. Another Sith Tournament 状压dp

    E. Another Sith Tournament 题目连接: http://www.codeforces.com/contest/678/problem/E Description The rul ...

  3. Codeforces 453B Little Pony and Harmony Chest:状压dp【记录转移路径】

    题目链接:http://codeforces.com/problemset/problem/453/B 题意: 给你一个长度为n的数列a,让你构造一个长度为n的数列b. 在保证b中任意两数gcd都为1 ...

  4. [多校联考2019(Round 5 T1)] [ATCoder3912]Xor Tree(状压dp)

    [多校联考2019(Round 5)] [ATCoder3912]Xor Tree(状压dp) 题面 给出一棵n个点的树,每条边有边权v,每次操作选中两个点,将这两个点之间的路径上的边权全部异或某个值 ...

  5. CF1103D Codeforces Round #534 (Div. 1) Professional layer 状压 DP

    题目传送门 https://codeforces.com/contest/1103/problem/D 题解 失去信仰的低水平选手的看题解的心路历程. 一开始看题目以为是选出一些数,每个数可以除掉一个 ...

  6. Codeforces 1383C - String Transformation 2(找性质+状压 dp)

    Codeforces 题面传送门 & 洛谷题面传送门 神奇的强迫症效应,一场只要 AC 了 A.B.D.E.F,就一定会把 C 补掉( 感觉这个 C 难度比 D 难度高啊-- 首先考虑对问题进 ...

  7. Codeforces Beta Round #5 C. Longest Regular Bracket Sequence 栈/dp

    C. Longest Regular Bracket Sequence Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.c ...

  8. Codeforces Beta Round #14 (Div. 2) D. Two Paths 树形dp

    D. Two Paths 题目连接: http://codeforces.com/contest/14/problem/D Description As you know, Bob's brother ...

  9. Codeforces Beta Round #10 B. Cinema Cashier (树状数组)

    题目大意: n波人去k*k的电影院看电影. 要尽量往中间坐,往前坐. 直接枚举,贪心,能坐就坐,坐在离中心近期的地方. #include <cstdio> #include <ios ...

随机推荐

  1. daterangepicker的个性化使用技巧

    由于该模板不自动将时间戳添加到input中去,始终为NaN,所以,自己选取起始时间与截止时间 var startTime =new Date(new Date().toLocaleDateString ...

  2. php实现姓名按首字母排序的类与方法

    php将名字按首字母进行排序 <?php public function getFirstChar($s){ $s0 = mb_substr($s,0,3); //获取名字的姓 $s = ico ...

  3. 用例程解释create_singlethread_workqueue与create_workqueue的区别

    用例程解释create_singlethread_workqueue与create_workqueue的区别 系统版本:linux3.4 使用create_singlethread_workqueue ...

  4. html表单相关标签及属性

    1.<form>标签 定义整体的表单区域 action属性 定义表单数据提交地址 method属性 定义表单提交的方式,一般有“get”方式和“post”方式 2.<label> ...

  5. 《Linux命令学习手册》系列分享专栏

    <Linux命令学习手册>系列分享专栏 <Linux命令学习手册>已整理成PDF文档,点击可直接下载至本地查阅https://www.webfalse.com/read/207 ...

  6. C语言基础篇(零)gcc编译和预处理

    导航: 1. gcc编译 2. 预处理 ----->x<------------->x<--------------->x<--------------->x ...

  7. Docker学习笔记-Windows系统支持(一)

    Docker对windows的支持情况: 一.Docker for Windows ServerDocker Enterprise Edition for Windows Server 2016htt ...

  8. Oracle入门第四天(上)——表管理与数据处理

    一.常见数据库对象 1.基本对象 对应的对象英文名参考:https://docs.oracle.com/cd/B19306_01/server.102/b14220/intro.htm#sthref6 ...

  9. sublime_text3常用配置

    安装(pojie)不再赘述. 一.设置字体与编码 preferences->Settings->Settings-User,在大括号中输入如下内容: “font_size”:16.0, “ ...

  10. CF 1064 D. Labyrinth

    D. Labyrinth http://codeforces.com/contest/1064/problem/D 题意: n*m的矩阵,只能往左走l次,往右走r次,上下走无限制,问能走到多少个点. ...