codeforces_400_D

题目大意:给出n扇门,m把钥匙,和没把钥匙可以改变状态(关->开,开->关》)的门的数量及对应编号(保证每个门被两把钥匙控制),现给出n扇门的初始状态(1表示开,0表示关),问是否可以通过这m把钥匙(可用可不用,不一定用完)使得所有的门都开启。

题解:终于看到了2-sat的能想出来的题了,2-sat本质是满族解的判断,这题显然可以用2-sat来求解,求解的一般套路是将每个点拆为两个点,分别表示取或者不取(即一件事的正反两面),最后通过2-sat算法,判断是否可行。这题需要一个转化,即我们对m拆点,表示用或者不用这把钥匙改变对应的门。那么如何连边?可以这样想:对于一个门 的初始状态,如果是开,那么两把钥匙要么都用,要么都不用;如果是关,一定是用一把弃一把。那么就是说连边是要用门的初始状态确定的,那么这题也就解决了。

#pragma comment(linker, "/STACK: 1024000000,1024000000")
#include <bits/stdc++.h>
#define pb push_back
#define mp make_pair
#define eb emplace_back
#define em emplace
#define pii pair<int,int>
#define de(x) cout << #x << " = " << x << endl
#define clr(a,b) memset(a,b,sizeof(a))
#define INF (0x3f3f3f3f)
#define LINF ((long long)(0x3f3f3f3f3f3f3f3f))
#define F first
#define S second
using namespace std;
inline int getint()
{
int _x=0; char _tc=getchar();
while(_tc<'0'||_tc>'9') _tc=getchar();
while(_tc>='0'&&_tc<='9') _x*=10,_x+=(_tc-'0'),_tc=getchar();
return _x;
} const int N = 1e5 + 15;
int n, m;
int dor[N];
vector<int> key[N]; struct TwoSet
{
static const int MAXV = 100100;
int V, n, tp, S[MAXV<<1];
vector<int> g[MAXV<<1];
bool vis[MAXV<<1]; void init( int tt )
{
n = tt;
V = (tt<<1) + 1;
for ( int i = 1; i <= V; i ++ )
g[i].clear(), vis[i] = false;
}
void addEdge( int x, int y )
{
g[x].pb(y);
g[y].pb(x);
}
bool dfs( int x )
{
if ( vis[ x > n ? x - n : x + n ] ) return false;
if ( vis[x] ) return true;
vis[ S[++tp] = x ] = 1;
for ( int v : g[x] )
if ( !dfs(v) ) return false;
return true;
} bool solve()
{
for ( int i = 1; i <= n; i ++ )
if ( !vis[i] && !vis[i+n] )
{
tp = 0;
if ( !dfs(i) )
{
while ( tp ) vis[S[tp--]] = false;
if ( !dfs(i+n) ) return false;
}
}
return true;
}
}TwoSet; int main()
{
scanf("%d%d", &n, &m);
for ( int i = 1; i <= n; i ++ )
scanf("%d", &dor[i]);
for ( int i = 1, x; i <= m; i ++ )
{
scanf("%d", &x);
for ( int j = 0, y; j < x; j ++ )
scanf("%d", &y), key[y].pb(i);
}
TwoSet.init(m);
for ( int i = 1, x, y; i <= n; i ++ )
{
x = key[i][0], y = key[i][1];
if ( !dor[i] )
{
TwoSet.addEdge(x,y+m);
TwoSet.addEdge(x+m,y);
}
else
{
TwoSet.addEdge(x,y);
TwoSet.addEdge(x+m,y+m);
}
}
if ( TwoSet.solve() ) puts("YES");
else puts("NO");
return 0;
}

CF_400_D的更多相关文章

随机推荐

  1. 关于layer.photos即照片显示的问题。

    在layer组件中,照片显示是不常用,今天做了一些不伤了. 在这里写出来,以备后用. 其中注意几个问题, 1.格式问题. 2.路径问题. 不同的layer有不同的格式,查看layerAPI中发现的格式 ...

  2. CentOS oracle Client客户端安装

    CentOS客户端安装方法如下: 1.安装客户端 rpm -ivh /当前目录/oracle-instantclient12.1-basic-12.1.0.2.0-1.x86_64.rpm rpm - ...

  3. Thrift入门之mac下的安装流程

    新建一个maven项目,先下载maven依赖  http://thrift.apache.org/download <dependency> <groupId>org.apac ...

  4. java 中关于System.out.println()的问题

    Java 的输出知识 1.System.out.println()不能直接写在类中,例如: 因为在 Class A{ //成员变量 //构造方法 //普通方法 //内部类 } 如果硬是想使用Syste ...

  5. linux memory dump--http://www.forensicswiki.org/wiki/Tools:Memory_Imaging

    Linux provides two virtual devices for this purpose, '/dev/mem' and '/dev/kmem', though many distrib ...

  6. JSON_CONTAINS

    select * from tb    where info->'$.name' = '特价促销'  or JSON_CONTAINS(info->'$[*].name', '" ...

  7. Scala高级语法

    一.隐式 implicit分类: (1)隐式参数 (2)隐式转换类型 (3)隐式类 特点:让代码变得更加灵活 (一)隐式参数 1.ImplicitTest object ImplicitTest { ...

  8. B - Network---UVA 315(无向图求割点)

        A Telephone Line Company (TLC) is establishing a new telephone cable network. They are connectin ...

  9. arpa/inet.h所引起的Segmentation fault及网络编程常见的头文件

    最近在学习Linux网络编程方面的知识,感觉还是有些困难.主要是对协议过程的理解,还有socket的API的理解不够深刻.今天复习编写了一个TCP的服务端和客户端的程序实现client.c从命令行参数 ...

  10. importlib模块与__import__详解

    importlib模块与__import__都可以通过过字符串来导入另外一个模块,但在用法上和本质上都有很大的不同. 通过下面示例说明,有如下一个工程目录: name = 'test' def get ...