完全平方数(钟神的hao)
【问题描述】
从1− ?中找一些数乘起来使得答案是一个完全平方数,求这个完全平方数
最大可能是多少。
【输入格式】
第一行一个数字?。
【输出格式】
一行一个整数代表答案对100000007取模之后的答案。
【样例输入】
7
【样例输出】
144
【样例解释】
但是塔外面有东西。
【数据规模与约定】
210。
55000。
70%的数据,1 ≤ ? ≤ 10 5 。
对于100%的数据,1 ≤ ? ≤ 5× 10 6 。
思路:
打素数表+分解质因数=满分ac-->ak虐场-->noip一等-->noi金牌-->IOI金牌-->acm领奖台(别做梦了写代码吧)
来,上代码:
#include<cstdio> #define LL long long
#define INF 100000007LL using namespace std; LL n,Num(),Ans=,Sum[]={},Prime[];
bool Flag[]={}; LL Count(LL S,LL X)
{
LL Number=;
while (S)
{
if (S&)
Number=(Number*X)%INF;
X=(X*X)%INF;
S>>=;
}
return Number;
} void Euler()
{
for (LL a=;a<=n;a++)
{
if (!Flag[a])
Prime[Num++]=a;
for (LL b=;b<Num&&a*Prime[b]<=n;b++)
{
Flag[a*Prime[b]]=true;
if (!(a%Prime[b]))
break;
}
}
} int main()
{
scanf("%I64d",&n);
Euler();
for (LL a=;a<Num;a++)
{
LL t=n;
while (t)
{
Sum[a]+=t/Prime[a];
t/=Prime[a];
}
}
for (LL a=;a<Num;a++)
if (Sum[a]&)
Ans=(Ans*Count(Sum[a]-,Prime[a]))%INF;
else
Ans=(Ans*Count(Sum[a],Prime[a]))%INF;
printf("%I64d",Ans);
return ;
}
完全平方数(钟神的hao)的更多相关文章
- 平面直接坐标系线段相交问题(小Q(钟神)的问题)
[问题描述] 小 Q 对计算几何有着浓厚的兴趣.他经常对着平面直角坐标系发呆,思考一些有趣的问题.今天,他想到了一个十分有意思的题目:首先,小 Q 会在?轴正半轴和?轴正半轴分别挑选?个点.随后,他将 ...
- 二维背包(钟神想要的)(不是DP)
[问题描述] 背包是个好东西,希望我也有.给你一个二维的背包,它的体积是? × ?.现在你有一些大小为1× 2和1×3的物品,每个物品有自己的价值.你希望往背包里面装一些物品,使得它们的价值和最大,问 ...
- 他(he)(钟神)
他[问题描述]一张长度为N的纸带,我们可以从左至右编号为0 −N(纸带最左端标号为0) .现在有M次操作,每次将纸带沿着某个位置进行折叠,问所有操作之后纸带的长度是多少.[输入格式]第一行两个数字N, ...
- GDOI2015——已成梦
今年GDOI(2015)在韶关北江中学(没记错的话应该是武江区)举行,感觉这五天就是一场梦,一场包含苦辣的梦. Day0 坐了一个上午的车,而且车内的空气又不好,感觉整个人都累倒下了. 到了北江之后吃 ...
- 四色GDOI&GDOI2015滚粗记
好吧自己太弱写不了什么四色NOI只能学学别人写个四色GDOI了...首先自己还是太弱所以就被学校卡了个名额就进不了省队了QAQ.自己GDOI觉得考得不错可是NOIP毕竟少了人家5分根本追不上去好不QA ...
- 清北学堂学习总结day3
小学知识总结 上午篇 •积性函数的卷积公式 (1)(f * g)( n ) = ∑(d|n) f( d ) x g ( n / d ) (2)代码实现 LL f[N], g[N], h[N]; voi ...
- 清明培训 清北学堂 DAY2
今天是钟皓曦老师的讲授~~ 总结了一下今天的内容: 数论!!! 1.整除性 2.质数 定义: 性质: 3.整数分解定理——算数基本定理 证明: 存在性: 设N是最小不满足唯一分解定理的整数 (1) ...
- 2019清明期间qbxt培训qaq
4.4下午:矩阵qwq part1矩阵乘法: 概念: 一个m×p的矩阵A 乘 一个p×n的矩阵B 得到一个矩阵一个m×n的矩阵AB 其中: 矩阵乘法满足结合律.分配率,不满足交换律 矩阵乘法—solu ...
- 清北学堂2019NOIP提高储备营DAY3
今天是钟神讲课,讲台上照旧摆满了冰红茶 目录时间到: $1. 动态规划 $2. 数位dp $3. 树形dp $4. 区间dp $5. 状压dp $6. 其它dp $1. 动态规划: ·以斐波那契数列为 ...
随机推荐
- 使用Reaver对WPS加密网络进行暴力破解
WPS状态探测 探测开启了WPS功能的AP,WPS Locked状态为NO的表示开启了WPS功能. wash -i wlan0mon PIN码获取 reaver -i wlan0mon -b MAC地 ...
- Android使用Fragment来实现TabHost的功能(解决切换Fragment状态不保存)以及各个Fragment之间的通信
以下内容为原创,转载请注明:http://www.cnblogs.com/tiantianbyconan/p/3360938.html 如新浪微博下面的标签切换功能,我以前也写过一篇博文(http:/ ...
- 【代码笔记】iOS-单例
一,工程图. 二,代码. NetManager.h #import <Foundation/Foundation.h> @interface NetManager : NSObject + ...
- 【Android】不使用WebView来执行Javascript脚本(Rhino)
前言 动态执行脚本能有效的降低重要功能硬编码带来的问题,尤其是依赖于第三方的应用,可以通过动态脚本+在线参数(例如友盟在线参数)再不更新应用的情况下升级功能. 声明 欢迎转载,但请保留文章原始出处:) ...
- Swift开发第十一篇——Designated、Convenience和Required
本篇主要讲解 Swift 中 Designated.Convenience和 Required 的使用: 在 OC 中 init 方法是非常不安全的,没人能够保证 init 只被调用一次,也没有人保证 ...
- mysql GROUP BY 与 ORDER BY 查询不是最新记录
转载:http://blog.csdn.net/qvbfndcwy/article/details/7200910 鉴于项目的需要,就从网上找到该文章,文章分析得很详细也很易懂,在android里,( ...
- DOM样式操作
CSS 到 DOM的抽象 通过操作 CSS 对应的 DOM对象来更新CSS样式 换肤操作 如何获取实际的样式(不仅有行内,更有页面和外联样式表中定义的样式) 样式表分为三类: 外联,页面,行内 内部样 ...
- JAVA 8 方法引用 - Method References
什么是方法引用 简单地说,就是一个Lambda表达式.在Java 8中,我们会使用Lambda表达式创建匿名方法,但是有时候,我们的Lambda表达式可能仅仅调用一个已存在的方法,而不做任何其它事,对 ...
- Zero to One读后感
Zero to One是一本不错的书,无论你是在职场还是在创业都应该看看先.书中没有告诉你任何的职业技巧,但是很明确的告诉了你应该有的思考方式,告诉你人与机器的关系,告诉成功企业固有的模式以及你为什么 ...
- itext 实现pdf打印数字上标和下标
https://kathleen1974.wordpress.com/category/itext-pdf/ In one of my project, we need to give the use ...