A typical implementation
Booth's algorithm can be implemented by repeatedly adding (with ordinary unsigned binary addition) one of two predetermined values A and S to a product P, then performing a rightward arithmetic shift on P. Let m and r be the multiplicand and multiplier, respectively; and let x and y represent the number of bits in m and r.
Determine the values of A and S, and the initial value of P. All of these numbers should have a length equal to (x + y + 1).
A: Fill the most significant (leftmost) bits with the value of m. Fill the remaining (y + 1) bits with zeros.
S: Fill the most significant bits with the value of (−m) in two's complement notation. Fill the remaining (y + 1) bits with zeros.
P: Fill the most significant x bits with zeros. To the right of this, append the value of r. Fill the least significant (rightmost) bit with a zero.
Determine the two least significant (rightmost) bits of P.
If they are 01, find the value of P + A. Ignore any overflow.
If they are 10, find the value of P + S. Ignore any overflow.
If they are 00, do nothing. Use P directly in the next step.
If they are 11, do nothing. Use P directly in the next step.
Arithmetically shift the value obtained in the 2nd step by a single place to the right. Let P now equal this new value.
Repeat steps 2 and 3 until they have been done y times.
Drop the least significant (rightmost) bit from P. This is the product of m and r.

For more details about Booth algorithm,refer to here

######################################################################################################
# Program: Booth Multiplication Algorithm
# Language: MIPS Assembly (32-bit)
# Arguments:
#   $2 stores multiplicand (m)
#   $3 stores multiplier   (r)
#   $5 stores the number of bits of each element
#   $6 stores high 32-bit of result
#   $7 stores low  32-bit of result
# Author: brant-ruan
# Date: 2016-03-11
# IDE: MARS 4.5
######################################################################################################
.text
    add $2, $0, -8      # multiplicand (m)
    add $3, $0, 3       # multiplier   (r)
    xor $4, $4, $4      # i = 0
    add $5, $0, 32      # max_iteration times
    xor $6, $6, $6      # high 32-bit of P
    add $7, $0, $3      # low  32-bit of P
    xor $9, $9, $9      # store the rightmost bit of P
begin:
    sll $10, $7, 1      # $10 = $7 << 1
    or  $9, $9, $10     #
    and $9, $9, 3       # generate the 2 rightmost bits of P
    beq $9, 0, shift    # 0 then goto shift
    beq $9, 3, shift    # 3 then goto shift
    beq $9, 2, case_2   # 2 then goto case_2
case_1:             # P(high 32-bit) = P(high 32-bit) + m
    add $6, $6, $2
    j shift
case_2:             # P(high 32-bit) = P(high 32-bit) - m
    sub $6, $6, $2
shift:
    and $8, $6, 1       # $8 stores the rightmost bit of high 32-bit of P
    sra $6, $6, 1       # high 32-bit >> 1
    sll $8, $8, 31      #
    and $9, $7, 1       # $9 stores the rightmost bit of P
    srl $7, $7, 1       # logical shift ! Not sra !
    or  $7, $8, $7      # rightmost of high 32-bit becomes the leftmost of low 32-bit
    add $4, $4, 1       # i++
    bne $4, $5, begin   # if i != 32, back to begin
end:

Booth Multiplication Algorithm [ASM-MIPS]的更多相关文章

  1. Design and Analysis of Algorithms_Fundamentals of the Analysis of Algorithm Efficiency

    I collect and make up this pseudocode from the book: <<Introduction to the Design and Analysis ...

  2. [转]Whirlwind Tour of ARM Assembly

    ref:http://www.coranac.com/tonc/text/asm.htm 23.1. Introduction Very broadly speaking, you can divid ...

  3. MARS3.6 Programming

    An Assembly Language I.D.E. To Engage Students Of All Levels * A Tutorial *2007 CCSC: Central Plains ...

  4. Conquer and Divide经典例子之Strassen算法解决大型矩阵的相乘

    在通过汉诺塔问题理解递归的精髓中我讲解了怎么把一个复杂的问题一步步recursively划分了成简单显而易见的小问题.其实这个解决问题的思路就是算法中常用的divide and conquer, 这篇 ...

  5. Codeforces 980E The Number Games - 贪心 - 树状数组

    题目传送门 传送点I 传送点II 传送点III 题目大意 给定一颗有$n$个点的树,$i$号点的权值是$2^{i}$要求删去$k$个点,使得剩下的点仍然连通,并且总权值和最大,问删去的所有点的编号. ...

  6. Strassen优化矩阵乘法(复杂度O(n^lg7))

    按照算法导论写的 还没有测试复杂度到底怎么样 不过这个真的很卡内存,挖个坑,以后写空间优化 还有Matthew Anderson, Siddharth Barman写了一个关于矩阵乘法的论文 < ...

  7. 各种字符串Hash函数(转)

    /// @brief BKDR Hash Function /// @detail 本 算法由于在Brian Kernighan与Dennis Ritchie的<The C Programmin ...

  8. memory ordering 内存排序

    Memory ordering - Wikipedia https://en.wikipedia.org/wiki/Memory_ordering https://zh.wikipedia.org/w ...

  9. 布斯乘法 Mips实现 - Booth Algorithm

    看了很久网上没有现成的代码和好一点的图,因此当一回搬运工.转自stackoverflow 布斯乘法器的Mips实现方法: .data promptStart: .asciiz "This p ...

随机推荐

  1. CSS3与页面布局学习笔记(三)——BFC、定位、浮动、7种垂直居中方法

    一.BFC与IFC 1.1.BFC与IFC概要 BFC(Block Formatting Context)即“块级格式化上下文”, IFC(Inline Formatting Context)即行内格 ...

  2. CSS3与页面布局学习笔记(一)——概要、选择器、特殊性与刻度单位

    web前端开发者最最注的内容是三个:HTML.CSS与JavaScript,他们分别在不同方面发挥自己的作用,HTML实现页面结构,CSS完成页面的表现与风格,JavaScript实现一些客户端的功能 ...

  3. Swiper – 经典的移动触摸滑块插件【免费】

    Swiper 是移动 Web 开发中最常用的滑块插件,是一款免费的,最现代化的移动触摸滑块,支持硬件加速的转换和惊人的原生表现.它的目的是在移动网站,移动 Web 应用程序和 Hygrid 混合应用程 ...

  4. 10个最好的 JavaScript 动画库和开发框架

    虽然 CSS3 动画功能能够让我们以简单轻松的方式实现动画效果,但是浏览器兼容性问题让人头疼.不过不用担心,我们还有另外的武器——JavaScript,它同样可以帮助你实现各种各样的动画效果,而且借助 ...

  5. 小谈React、React Native、React Web

    React有三个东西,React JS 前端Web框架,React Native 移动终端Hybrid框架,React Web是一个源码转换工具(React Native 转 Web,并之所以特别提出 ...

  6. css样式 --- CSS hack

    前端样式,虽然不是经常需要hack,但是我们经常会遇到各浏览器表现不一致的情况.基于此,某些情况我们会极不情愿的使用这个不太友好的方式来达到大家要求的页面表现.我个人是不太推荐使用hack的,要知道一 ...

  7. charset的获取方法

      1.解析http请求的返回值: 2.通过解析html的meta标签里面的数据: 3.通过cpdetector(java环境下)来自动验证: ---------------------------- ...

  8. android am命令以及hotkey文件的编写

    1.拨打电话:am start -a android.intent.action.CALL -d tel:10086 这里-a表示动作,-d表述传入的数据,还有-t表示传入的类型. 2. 打开一个网页 ...

  9. iOS-H5学习篇-01

    什么是HTML? HTML 是用来描述网页的一种语言. 0.HTML 指的是超文本标记语言 1.HTML 不是一种编程语言,而是一种标记语言 2.标记语言是一套标记标签 3.HTML 使用标记标签来描 ...

  10. php设计模式 策略模式

    策略模式: 将一组特定的行为和算法封装成类,以适应某些特定的上下文环境: 实际应用举例,假如一个电商网站系统,针对男性女性用户要各自跳转到不同的商品类目,并且所有广告位展示不同的广告. UserStr ...