Booth Multiplication Algorithm [ASM-MIPS]
A typical implementation
Booth's algorithm can be implemented by repeatedly adding (with ordinary unsigned binary addition) one of two predetermined values A and S to a product P, then performing a rightward arithmetic shift on P. Let m and r be the multiplicand and multiplier, respectively; and let x and y represent the number of bits in m and r.
Determine the values of A and S, and the initial value of P. All of these numbers should have a length equal to (x + y + 1).
A: Fill the most significant (leftmost) bits with the value of m. Fill the remaining (y + 1) bits with zeros.
S: Fill the most significant bits with the value of (−m) in two's complement notation. Fill the remaining (y + 1) bits with zeros.
P: Fill the most significant x bits with zeros. To the right of this, append the value of r. Fill the least significant (rightmost) bit with a zero.
Determine the two least significant (rightmost) bits of P.
If they are 01, find the value of P + A. Ignore any overflow.
If they are 10, find the value of P + S. Ignore any overflow.
If they are 00, do nothing. Use P directly in the next step.
If they are 11, do nothing. Use P directly in the next step.
Arithmetically shift the value obtained in the 2nd step by a single place to the right. Let P now equal this new value.
Repeat steps 2 and 3 until they have been done y times.
Drop the least significant (rightmost) bit from P. This is the product of m and r.
For more details about Booth algorithm,refer to here
######################################################################################################
# Program: Booth Multiplication Algorithm
# Language: MIPS Assembly (32-bit)
# Arguments:
# $2 stores multiplicand (m)
# $3 stores multiplier (r)
# $5 stores the number of bits of each element
# $6 stores high 32-bit of result
# $7 stores low 32-bit of result
# Author: brant-ruan
# Date: 2016-03-11
# IDE: MARS 4.5
######################################################################################################
.text
add $2, $0, -8 # multiplicand (m)
add $3, $0, 3 # multiplier (r)
xor $4, $4, $4 # i = 0
add $5, $0, 32 # max_iteration times
xor $6, $6, $6 # high 32-bit of P
add $7, $0, $3 # low 32-bit of P
xor $9, $9, $9 # store the rightmost bit of P
begin:
sll $10, $7, 1 # $10 = $7 << 1
or $9, $9, $10 #
and $9, $9, 3 # generate the 2 rightmost bits of P
beq $9, 0, shift # 0 then goto shift
beq $9, 3, shift # 3 then goto shift
beq $9, 2, case_2 # 2 then goto case_2
case_1: # P(high 32-bit) = P(high 32-bit) + m
add $6, $6, $2
j shift
case_2: # P(high 32-bit) = P(high 32-bit) - m
sub $6, $6, $2
shift:
and $8, $6, 1 # $8 stores the rightmost bit of high 32-bit of P
sra $6, $6, 1 # high 32-bit >> 1
sll $8, $8, 31 #
and $9, $7, 1 # $9 stores the rightmost bit of P
srl $7, $7, 1 # logical shift ! Not sra !
or $7, $8, $7 # rightmost of high 32-bit becomes the leftmost of low 32-bit
add $4, $4, 1 # i++
bne $4, $5, begin # if i != 32, back to begin
end:
Booth Multiplication Algorithm [ASM-MIPS]的更多相关文章
- Design and Analysis of Algorithms_Fundamentals of the Analysis of Algorithm Efficiency
I collect and make up this pseudocode from the book: <<Introduction to the Design and Analysis ...
- [转]Whirlwind Tour of ARM Assembly
ref:http://www.coranac.com/tonc/text/asm.htm 23.1. Introduction Very broadly speaking, you can divid ...
- MARS3.6 Programming
An Assembly Language I.D.E. To Engage Students Of All Levels * A Tutorial *2007 CCSC: Central Plains ...
- Conquer and Divide经典例子之Strassen算法解决大型矩阵的相乘
在通过汉诺塔问题理解递归的精髓中我讲解了怎么把一个复杂的问题一步步recursively划分了成简单显而易见的小问题.其实这个解决问题的思路就是算法中常用的divide and conquer, 这篇 ...
- Codeforces 980E The Number Games - 贪心 - 树状数组
题目传送门 传送点I 传送点II 传送点III 题目大意 给定一颗有$n$个点的树,$i$号点的权值是$2^{i}$要求删去$k$个点,使得剩下的点仍然连通,并且总权值和最大,问删去的所有点的编号. ...
- Strassen优化矩阵乘法(复杂度O(n^lg7))
按照算法导论写的 还没有测试复杂度到底怎么样 不过这个真的很卡内存,挖个坑,以后写空间优化 还有Matthew Anderson, Siddharth Barman写了一个关于矩阵乘法的论文 < ...
- 各种字符串Hash函数(转)
/// @brief BKDR Hash Function /// @detail 本 算法由于在Brian Kernighan与Dennis Ritchie的<The C Programmin ...
- memory ordering 内存排序
Memory ordering - Wikipedia https://en.wikipedia.org/wiki/Memory_ordering https://zh.wikipedia.org/w ...
- 布斯乘法 Mips实现 - Booth Algorithm
看了很久网上没有现成的代码和好一点的图,因此当一回搬运工.转自stackoverflow 布斯乘法器的Mips实现方法: .data promptStart: .asciiz "This p ...
随机推荐
- CSS高级选择符
2016-11-07 <css入门经典>第八章 1.属性选择器 选择器 描述 [attribute] 用于选取带有指定属性的元素. [attribute=value] 用于选取带有指定属性 ...
- Web前端开发工程师基本要求
一位好的Web前端开发工程师在知识体系上既要有广度,又要有深度,所以很多大公司即使出高薪也很难招聘到理想的前端开发工程师.现在说的重点不在于讲解技术,而是更侧重于对技巧的讲解.技术非黑即白,只有对和错 ...
- ThinkPHP3.2 G函数代码及 使用方法
ThinkPHP3.2 G函数代码及 使用方法 代码: // 内存是否可调用 define('MEMORY_LIMIT_ON',function_exists('memory_get_usage')) ...
- JavaScript学习笔记-正则表达式(语法篇)
正则表达式的模式规则是由一个字符系列组成的,包括所有字母和数字在内;大多数的字符(所有字母和数字)都是按字符的直接量来描述带匹配的字符;一些具有特殊语义的字符按照其特殊语义来进行匹配,有些字符需要通过 ...
- SAP/SD - 做SD你要知道的透明表
一.客户主数据基本数据放在KNA1里:公司代码放在KNB1里:销售视图放在KNVV里:合作伙伴放在KNVP里:二.信用主数据KNKK里有信贷限额.应收总额.特别往来:S066里是未清订单值:S067里 ...
- Atitit.病毒木马的快速扩散机制原理nio 内存映射MappedByteBuffer
Atitit.病毒木马的快速扩散机制原理nio 内存映射MappedByteBuffer 1. Java NIO(New Input/Output)1 1.1. 变更通知(因为每个事件都需要一个监听者 ...
- Atitit.复合文档的格式 标准化格式
Atitit.复合文档的格式 标准化格式 1. Docfile1 2. Iso Cdf cd file1 3. Zip1 4. Ooxml1 5. Odf :OpenDocument Form ...
- oracle应该安装在什么版本的linux下
今天想在我的ubuntu上安装oracle 11g r2,在网上所有了一些教程,然后找到了oracle官网网站的Operating System Requirements,内容如下: Operatin ...
- Android Animation学习(六) View Animation介绍
Android Animation学习(六) View Animation介绍 View Animation View animation系统可以用来执行View上的Tween animation和F ...
- LBS上传到百度地图
准备: 第一步:注册百度地图开发者账号 第二步:使用开发者账号注册相对应秘钥 在LBS后台添加所需要上传的字段 1,添加WebClientHelper帮助类 2,LBS帮助类 private stri ...