POJ3463Sightseeing[次短路计数]
| Time Limit: 2000MS | Memory Limit: 65536K | |
| Total Submissions: 8707 | Accepted: 3056 |
Description
Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the bus moves from one city S to another city F. On this way, the tourists in the bus can see the sights alongside the route travelled. Moreover, the bus makes a number of stops (zero or more) at some beautiful cities, where the tourists get out to see the local sights.
Different groups of tourists may have different preferences for the sights they want to see, and thus for the route to be taken from S to F. Therefore, Your Personal Holiday wants to offer its clients a choice from many different routes. As hotels have been booked in advance, the starting city S and the final city F, though, are fixed. Two routes from S to F are considered different if there is at least one road from a city A to a city B which is part of one route, but not of the other route.
There is a restriction on the routes that the tourists may choose from. To leave enough time for the sightseeing at the stops (and to avoid using too much fuel), the bus has to take a short route from S to F. It has to be either a route with minimal distance, or a route which is one distance unit longer than the minimal distance. Indeed, by allowing routes that are one distance unit longer, the tourists may have more choice than by restricting them to exactly the minimal routes. This enhances the impression of a personal holiday.

For example, for the above road map, there are two minimal routes from S = 1 to F = 5: 1 → 2 → 5 and 1 → 3 → 5, both of length 6. There is one route that is one distance unit longer: 1 → 3 → 4 → 5, of length 7.
Now, given a (partial) road map of the Benelux and two cities S and F, tour operator Your Personal Holiday likes to know how many different routes it can offer to its clients, under the above restriction on the route length.
Input
The first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format:
One line with two integers N and M, separated by a single space, with 2 ≤ N ≤ 1,000 and 1 ≤ M ≤ 10, 000: the number of cities and the number of roads in the road map.
M lines, each with three integers A, B and L, separated by single spaces, with 1 ≤ A, B ≤ N, A ≠ B and 1 ≤ L ≤ 1,000, describing a road from city A to city B with length L.
The roads are unidirectional. Hence, if there is a road from A to B, then there is not necessarily also a road from B to A. There may be different roads from a city A to a city B.
One line with two integers S and F, separated by a single space, with 1 ≤ S, F ≤ N and S ≠ F: the starting city and the final city of the route.
There will be at least one route from S to F.
Output
For every test case in the input file, the output should contain a single number, on a single line: the number of routes of minimal length or one distance unit longer. Test cases are such, that this number is at most 109 = 1,000,000,000.
Sample Input
2
5 8
1 2 3
1 3 2
1 4 5
2 3 1
2 5 3
3 4 2
3 5 4
4 5 3
1 5
5 6
2 3 1
3 2 1
3 1 10
4 5 2
5 2 7
5 2 7
4 1
Sample Output
3
2
Hint
The first test case above corresponds to the picture in the problem description.
Source
用dijkstra比较好,spfa可能有的重复
//
// main.cpp
// poj3255
//
// Created by Candy on 9/14/16.
// Copyright 漏 2016 Candy. All rights reserved.
// #include <iostream>
#include <cstdio>
#include <algorithm>
#include <queue>
#include <cstring>
using namespace std;
const int N=,M=,INF=1e9+;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x;
}
int t,n,m,u,v,w,s,f;
struct edge{
int v,w,ne;
}e[M];
int h[N],ecnt=;
inline void ins(int u,int v,int w){
ecnt++;
e[ecnt].v=v;e[ecnt].w=w;e[ecnt].ne=h[u];h[u]=ecnt;
}
int d[N][],vis[N][],cnt[N][];
struct hn{
int u,d,p;
hn(int a=,int b=,int c=):u(a),d(b),p(c){}
bool operator < (const hn &rhs)const{return d>rhs.d;}
};
void dijkstra(int s){
priority_queue<hn> q;
memset(vis,,sizeof(vis));
memset(cnt,,sizeof(cnt));
for(int i=;i<=n;i++) {d[i][]=d[i][]=INF;}
q.push(hn(s,,));
d[s][]=; cnt[s][]=;
while(!q.empty()){
hn now=q.top();q.pop();
int u=now.u,p=now.p;
if(vis[u][p]) continue;
vis[u][p]=;
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v,w=e[i].w;
if(d[v][]>d[u][p]+w){
d[v][]=d[v][];
cnt[v][]=cnt[v][];
d[v][]=d[u][p]+w;
cnt[v][]=cnt[u][p]; q.push(hn(v,d[v][],));
q.push(hn(v,d[v][],));
}else
if(d[v][]==d[u][p]+w){
cnt[v][]+=cnt[u][p];
}else
if(d[v][]>d[u][p]+w){
d[v][]=d[u][p]+w;
cnt[v][]=cnt[u][p];
q.push(hn(v,d[v][],));
}else
if(d[v][]==d[u][p]+w)
cnt[v][]+=cnt[u][p];
}
}
}
int main(int argc, const char * argv[]) {
t=read();
while(t--){
memset(h,,sizeof(h)); ecnt=;
n=read();m=read();
for(int i=;i<=m;i++){u=read();v=read();w=read();ins(u,v,w);}
s=read();f=read();
dijkstra(s);
if(d[f][]==d[f][]+) cnt[f][]+=cnt[f][];
printf("%d\n",cnt[f][]);
}
return ;
}
POJ3463Sightseeing[次短路计数]的更多相关文章
- 【SPFA】 最短路计数
最短路计数 [问题描述] 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. [输入格式] 输入第一行包含2个正整数N,M,为图的顶点数与边数. ...
- P1144 最短路计数
P1144 最短路计数 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 输入第一行包含2个正整数N,M,为图的顶 ...
- 洛谷P1144最短路计数题解
最短路计数 此题还是寻找从1到i点总共有几个最短路且每条边的边长为1,对于这种寻找最短路的个数,我们可以反向搜索,即先用\(SPFA\)预处理出所有点的最短路,然后我们反向记忆化搜索,可以用\(sum ...
- 洛谷P1144 最短路计数(SPFA)
To 洛谷.1144 最短路计数 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 输入第一行包含2个正整数N,M ...
- 2018.11.05 NOIP模拟 规避(最短路计数)
传送门 正难则反. 考虑计算两人相遇的方案数. 先正反跑一遍最短路计数. 然后对于一条在最短路上的边(u,v)(u,v)(u,v),如果(dis(s,u)*2<total&&di ...
- 洛谷 P1144 最短路计数 解题报告
P1144 最短路计数 题目描述 给出一个\(N\)个顶点\(M\)条边的无向无权图,顶点编号为\(1-N\).问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 第一行包含2个正 ...
- BZOJ1632: [Usaco2007 Feb]Lilypad Pond SPFA+最短路计数
Description 为了让奶牛们娱乐和锻炼,农夫约翰建造了一个美丽的池塘.这个长方形的池子被分成了M行N列个方格(1≤M,N≤30).一些格子是坚固得令人惊讶的莲花,还有一些格子是岩石,其余的只是 ...
- 1491. [NOI2007]社交网络【最短路计数】
Description 在社交网络(socialnetwork)的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题. 在一个社交圈子里有n个人,人与人之间有不同程度的关系.我们将这 ...
- 洛谷P1144 最短路计数 及其引申思考
图论题目练得比较少,发一道spfa的板子题目- 题目:P1144 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: ...
随机推荐
- 《javascript权威指南》读书笔记(连载)
这是一篇很长的博客 终于把权威指南给买回来了,之前一直犹豫,第一:书太厚,怕买了不能坚持看完.第二:觉得太贵,最少100¥.现在实习也能发点工资了,给自己定了一个志愿:把一个月的工资用于买书.这么一想 ...
- Node.js的基础学习1
nodejs windows下的调用方法: C:\Users\owen>node helloworld.jsHello WorldHello: 25 C:\Users\owen>nod ...
- abap--How to debug backgroud job
最近被一个朋友问起如何调试后台进程(一个abap的面试题),我一时也不知道如何答,他后来告诉我到sdn上找答案,我现在将答案收集供大家参考:Steps 1. Create variant called ...
- GitHub学习心得之 安装配置与多帐号管理
作者:枫雪庭 出处:http://www.cnblogs.com/FengXueTing-px/ 欢迎转载 GitHub学习心得之 安装配置与多帐号管理 1.前言2.GitHub Linux安装(ub ...
- 什么时候用Application的Context,什么时候用Activity的Context
单例模式用application的context 如果我们在Activity A中或者其他地方使用Foo.getInstance()时,我们总是会顺手写一个『this』或者『mContext』(这个变 ...
- This version of android studio is incompatible with the gradle version used.Try disabling the instant run解决办法
今天打开android studio又碰到一个奇怪的问题:This version of android studio is incompatible with the gradle version ...
- 利用听云Server和听云Network实测Kubernetes和Mesos在高并发下的网络性能
文章出自:听云博客 随着公司业务的不断增长,我们的应用数量也有了爆发式增长.伴随着应用爆发式的增长,管理的难度也随之加大.如何在业务爆发增长的同时快速完成扩容成了很大的挑战.Docker的横空出世恰巧 ...
- UITextField限制中英文字数和光标定位以及第三方输入限制问题
先自定义一个UITextField的子类HLNavTextField,在控制器里调用子类的- (void)limitHansLength:(int)hans otherLength:(int)othe ...
- 面试问题-使用Java线程做数学运算
这是一个展示如何使用join()方法的例子. 问题: 使用Java多线程计算表达式1*2/(1+2)的值. 解决方案: 使用一个线程做加法运算,另一个线程做乘法运算,还有一个主线程main做除法运算. ...
- 10个关于Java异常的常见问题
这篇文章总结了十个经常被问到的JAVA异常问题: 1.检查型异常VS非检查型异常 简单的说,检查型异常是指需要在方法中自己捕获异常处理或者声明抛出异常由调用者去捕获处理: 非检查型异常指那些不能解决的 ...