Sightseeing
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 8707   Accepted: 3056

Description

Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the bus moves from one city S to another city F. On this way, the tourists in the bus can see the sights alongside the route travelled. Moreover, the bus makes a number of stops (zero or more) at some beautiful cities, where the tourists get out to see the local sights.

Different groups of tourists may have different preferences for the sights they want to see, and thus for the route to be taken from S to F. Therefore, Your Personal Holiday wants to offer its clients a choice from many different routes. As hotels have been booked in advance, the starting city S and the final city F, though, are fixed. Two routes from S to F are considered different if there is at least one road from a city A to a city B which is part of one route, but not of the other route.

There is a restriction on the routes that the tourists may choose from. To leave enough time for the sightseeing at the stops (and to avoid using too much fuel), the bus has to take a short route from S to F. It has to be either a route with minimal distance, or a route which is one distance unit longer than the minimal distance. Indeed, by allowing routes that are one distance unit longer, the tourists may have more choice than by restricting them to exactly the minimal routes. This enhances the impression of a personal holiday.

For example, for the above road map, there are two minimal routes from S = 1 to F = 5: 1 → 2 → 5 and 1 → 3 → 5, both of length 6. There is one route that is one distance unit longer: 1 → 3 → 4 → 5, of length 7.

Now, given a (partial) road map of the Benelux and two cities S and F, tour operator Your Personal Holiday likes to know how many different routes it can offer to its clients, under the above restriction on the route length.

Input

The first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format:

  • One line with two integers N and M, separated by a single space, with 2 ≤ N ≤ 1,000 and 1 ≤ M ≤ 10, 000: the number of cities and the number of roads in the road map.

  • M lines, each with three integers AB and L, separated by single spaces, with 1 ≤ AB ≤ NA ≠ B and 1 ≤ L ≤ 1,000, describing a road from city A to city B with length L.

    The roads are unidirectional. Hence, if there is a road from A to B, then there is not necessarily also a road from B to A. There may be different roads from a city A to a city B.

  • One line with two integers S and F, separated by a single space, with 1 ≤ SF ≤ N and S ≠ F: the starting city and the final city of the route.

    There will be at least one route from S to F.

Output

For every test case in the input file, the output should contain a single number, on a single line: the number of routes of minimal length or one distance unit longer. Test cases are such, that this number is at most 109 = 1,000,000,000.

Sample Input

2
5 8
1 2 3
1 3 2
1 4 5
2 3 1
2 5 3
3 4 2
3 5 4
4 5 3
1 5
5 6
2 3 1
3 2 1
3 1 10
4 5 2
5 2 7
5 2 7
4 1

Sample Output

3
2

Hint

The first test case above corresponds to the picture in the problem description.

Source


用dijkstra比较好,spfa可能有的重复
cnt相等时计数
注意是长度多1
 
//
// main.cpp
// poj3255
//
// Created by Candy on 9/14/16.
// Copyright 漏 2016 Candy. All rights reserved.
// #include <iostream>
#include <cstdio>
#include <algorithm>
#include <queue>
#include <cstring>
using namespace std;
const int N=,M=,INF=1e9+;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x;
}
int t,n,m,u,v,w,s,f;
struct edge{
int v,w,ne;
}e[M];
int h[N],ecnt=;
inline void ins(int u,int v,int w){
ecnt++;
e[ecnt].v=v;e[ecnt].w=w;e[ecnt].ne=h[u];h[u]=ecnt;
}
int d[N][],vis[N][],cnt[N][];
struct hn{
int u,d,p;
hn(int a=,int b=,int c=):u(a),d(b),p(c){}
bool operator < (const hn &rhs)const{return d>rhs.d;}
};
void dijkstra(int s){
priority_queue<hn> q;
memset(vis,,sizeof(vis));
memset(cnt,,sizeof(cnt));
for(int i=;i<=n;i++) {d[i][]=d[i][]=INF;}
q.push(hn(s,,));
d[s][]=; cnt[s][]=;
while(!q.empty()){
hn now=q.top();q.pop();
int u=now.u,p=now.p;
if(vis[u][p]) continue;
vis[u][p]=;
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v,w=e[i].w;
if(d[v][]>d[u][p]+w){
d[v][]=d[v][];
cnt[v][]=cnt[v][];
d[v][]=d[u][p]+w;
cnt[v][]=cnt[u][p]; q.push(hn(v,d[v][],));
q.push(hn(v,d[v][],));
}else
if(d[v][]==d[u][p]+w){
cnt[v][]+=cnt[u][p];
}else
if(d[v][]>d[u][p]+w){
d[v][]=d[u][p]+w;
cnt[v][]=cnt[u][p];
q.push(hn(v,d[v][],));
}else
if(d[v][]==d[u][p]+w)
cnt[v][]+=cnt[u][p];
}
}
}
int main(int argc, const char * argv[]) {
t=read();
while(t--){
memset(h,,sizeof(h)); ecnt=;
n=read();m=read();
for(int i=;i<=m;i++){u=read();v=read();w=read();ins(u,v,w);}
s=read();f=read();
dijkstra(s);
if(d[f][]==d[f][]+) cnt[f][]+=cnt[f][];
printf("%d\n",cnt[f][]);
}
return ;
}

POJ3463Sightseeing[次短路计数]的更多相关文章

  1. 【SPFA】 最短路计数

    最短路计数 [问题描述]   给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. [输入格式]   输入第一行包含2个正整数N,M,为图的顶点数与边数. ...

  2. P1144 最短路计数

    P1144 最短路计数 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 输入第一行包含2个正整数N,M,为图的顶 ...

  3. 洛谷P1144最短路计数题解

    最短路计数 此题还是寻找从1到i点总共有几个最短路且每条边的边长为1,对于这种寻找最短路的个数,我们可以反向搜索,即先用\(SPFA\)预处理出所有点的最短路,然后我们反向记忆化搜索,可以用\(sum ...

  4. 洛谷P1144 最短路计数(SPFA)

    To 洛谷.1144 最短路计数 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 输入第一行包含2个正整数N,M ...

  5. 2018.11.05 NOIP模拟 规避(最短路计数)

    传送门 正难则反. 考虑计算两人相遇的方案数. 先正反跑一遍最短路计数. 然后对于一条在最短路上的边(u,v)(u,v)(u,v),如果(dis(s,u)*2<total&&di ...

  6. 洛谷 P1144 最短路计数 解题报告

    P1144 最短路计数 题目描述 给出一个\(N\)个顶点\(M\)条边的无向无权图,顶点编号为\(1-N\).问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 第一行包含2个正 ...

  7. BZOJ1632: [Usaco2007 Feb]Lilypad Pond SPFA+最短路计数

    Description 为了让奶牛们娱乐和锻炼,农夫约翰建造了一个美丽的池塘.这个长方形的池子被分成了M行N列个方格(1≤M,N≤30).一些格子是坚固得令人惊讶的莲花,还有一些格子是岩石,其余的只是 ...

  8. 1491. [NOI2007]社交网络【最短路计数】

    Description 在社交网络(socialnetwork)的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题. 在一个社交圈子里有n个人,人与人之间有不同程度的关系.我们将这 ...

  9. 洛谷P1144 最短路计数 及其引申思考

    图论题目练得比较少,发一道spfa的板子题目- 题目:P1144 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: ...

随机推荐

  1. css居中完全指南(翻译)

    最近参加了百度的前端技术学院,任务4是要求一个元素在父元素中水平和垂直居中,提供的一篇文章对各种情况都进行了分析,很不错,英文也不是那么难懂,毕竟代码还是主体,翻译过来分享出来,翻译内容带有自己的理解 ...

  2. VS无法启动 IISExpress web 服务器

    VS无法启动 IISExpress web 服务器     今天把原来的VS卸载重装了,重装之后启动一个web项目时发现启动不起来,提示如下:     在网上查找资料之后发现是由于WebMatrix也 ...

  3. iOS 3DES加密解密(一行代码搞定)

    3DES(或称为Triple DES)是三重数据加密算法(TDEA,Triple Data Encryption Algorithm)块密码的通称.它相当于是对每个数据块应用三次DES加密算法.由于计 ...

  4. SharePoint 2013 场解决方案包含第三方程序集

    前言 当我们使用SharePoint 场解决方案的时候,经常会包含第三方的程序集,而第三方的程序集经常会有强签名的问题,如果有强签名可以部署到GAC,没有的话也可以部署到应用程序下. 那么,很多初学者 ...

  5. Android布局优化策略

    我们要知道布局是否合理,可以通过Hierarchy Viewer这个工具.打开Hierarchy Viewer(定位到tools/目录下,直接执行hierarchyviewer的命令,选定需要查看的P ...

  6. IOS常用第三方开源类库&组件

    1.AFNetworking AFNetworking 采用 NSURLConnection + NSOperation, 主要方便与服务端 API 进行数据交换, 操作简单, 功能强大, 现在许多人 ...

  7. Android TextView 高亮字体并添加点击事件

    运行效果 package com.zutil.lib; import android.graphics.Typeface; import android.os.Bundle; import andro ...

  8. 从Eclipse迁移到Android Studio

    Google正式推出了Android Studio 1.0,Android默认的开发工具也由Eclipse变成了intellij,对Eclipse的支持肯定会越来越少了,对于Android开发者来说, ...

  9. 【代码笔记】iOS-点击顶点处,弹出另一个小的界面

    一,效果图. 二,文件目录. 三,代码. RootViewController.h #import <UIKit/UIKit.h> @interface RootViewControlle ...

  10. iOS字体换算 PS的字体大小 <=>iOS上字体大小