http://poj.org/problem?id=3241

曼哈顿距离最小生成树模板题。

核心思想是把坐标系转3次,以及以横坐标为第一关键字,纵坐标为第二关键字排序后,从后往前扫。扫完一个点就把它插到树状数组的y-x位置上,权值为x+y。查询时查询扫过的所有点满足ydone-xdone>=ynow-xnow时,直接是树状数组中的的一个后缀区间,从后往前扫保证了区间内的这些点都在当前点的y轴向右扫45度的范围内。树状数组实现查询x+y的最小值,以及此最小值对应原数组中的位置,方便建图连边。

模板是抄的别人的QAQ

时间复杂度$O(n\log n)$

#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 100003;
int in() {
int k = 0, fh = 1; char c = getchar();
for(; c < '0' || c > '9'; c = getchar())
if (c == '-') fh = -1;
for(; c >= '0' && c <= '9'; c = getchar())
k = (k << 3) + (k << 1) + c - '0';
return k * fh;
} struct Point {
int x, y, id;
bool operator < (const Point &A) const {
return x == A.x ? y < A.y : x < A.x;
}
} P[N];
struct Bits {
int mn, pos;
void init() {mn = 0x7fffffff; pos = -1;}
} bit[N];
int tot;
struct Edge {
int u, v, dis;
bool operator < (const Edge &A) const {
return dis < A.dis;
}
} E[N << 2];
void add(int a, int b, int c) {E[++tot] = (Edge) {a, b, c};} int n, fa[N], k;
int find(int x) {
if (fa[x] == x) return x;
fa[x] = find(fa[x]); return fa[x];
} int dist(int x, int y) {
return abs(P[x].x - P[y].x) + abs(P[x].y - P[y].y);
} void update(int x, int num, int pos) {
for(; x; x -= (x & (-x)))
if (num < bit[x].mn)
bit[x].mn = num, bit[x].pos = pos;
} int m;
int query(int x) {
int ans = 0x7fffffff, pos = -1;
for(x; x <= m; x += (x & (-x)))
if (bit[x].mn < ans)
ans = bit[x].mn, pos = bit[x].pos;
return pos;
} int a[N], H[N], cnt;
int solve() {
for(int change = 0; change < 4; ++change) {
if (change == 1 || change == 3)
for(int i = 1; i <= n; ++i) swap(P[i].x, P[i].y);
else if (change == 2)
for(int i = 1; i <= n; ++i) P[i].x = -P[i].x; sort(P + 1, P + n + 1);
for(int i = 1; i <= n; ++i)
a[i] = H[i] = P[i].y - P[i].x;
cnt = n;
sort(H + 1, H + cnt + 1);
cnt = unique(H + 1, H + cnt + 1) - H;
for(int i = 1; i <= cnt; ++i) bit[i].init();
int pos, tmp; m = cnt;
for(int i = n; i > 0; --i) {
pos = lower_bound(H + 1, H + cnt, a[i]) - H;
tmp = query(pos);
if (tmp != -1)
add(P[i].id, P[tmp].id, dist(i, tmp));
update(pos, P[i].x + P[i].y, i);
}
}
sort(E + 1, E + tot + 1);
cnt = n - k;
for(int i = 1; i <= n; ++i) fa[i] = i;
int u, v;
for(int i = 1; i <= tot; ++i) {
u = find(E[i].u); v = find(E[i].v);
if (u != v) {
--cnt;
fa[u] = v;
if (cnt == 0) return E[i].dis;
}
}
} int main() {
while (~scanf("%d%d", &n, &k)) {
tot = 0;
for(int i = 1; i <= n; ++i) {
P[i].x = in(); P[i].y = in();
P[i].id = i;
}
printf("%d\n", solve());
}
return 0;
}

【POJ 3241】Object Clustering 曼哈顿距离最小生成树的更多相关文章

  1. POJ 3241 Object Clustering 曼哈顿最小生成树

    Object Clustering   Description We have N (N ≤ 10000) objects, and wish to classify them into severa ...

  2. poj 3241 Object Clustering (曼哈顿最小生成树)

    Object Clustering Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 2640   Accepted: 806 ...

  3. POJ 3241Object Clustering曼哈顿距离最小生成树

    Object Clustering Description We have N (N ≤ 10000) objects, and wish to classify them into several ...

  4. POJ 3241 Object Clustering(Manhattan MST)

    题目链接:http://poj.org/problem?id=3241 Description We have N (N ≤ 10000) objects, and wish to classify ...

  5. 51nod 1213 二维曼哈顿距离最小生成树

    1213 二维曼哈顿距离最小生成树 基准时间限制:4 秒 空间限制:131072 KB 分值: 160 难度:6级算法题  收藏  关注 二维平面上有N个坐标为整数的点,点x1 y1同点x2 y2之间 ...

  6. 曼哈顿距离最小生成树 codechef Dragonstone

    曼哈顿距离最小生成树 codechef Dragonstone 首先,对于每一个点来说有用的边只有它向它通过 x=0,y=0,y=x,y=-x 切出来的八个平面的最近点. 证明 我不会 反正当结论记住 ...

  7. [51nod1213]二维曼哈顿距离最小生成树

    二维平面上有N个坐标为整数的点,点x1 y1同点x2 y2之间的距离为:横纵坐标的差的绝对值之和,即:Abs(x1 - x2) + Abs(y1 - y2)(也称曼哈顿距离).求这N个点所组成的完全图 ...

  8. POJ 3241 曼哈顿距离最小生成树 Object Clustering

    先上几个资料: 百度文库有详细的分析和证明 cxlove的博客 TopCoder Algorithm Tutorials #include <cstdio> #include <cs ...

  9. POJ3241 Object Clustering 曼哈顿最小生成树

    题意:转换一下就是求曼哈顿最小生成树的第n-k条边 参考:莫涛大神的论文<平面点曼哈顿最小生成树> /* Problem: 3241 User: 96655 Memory: 920K Ti ...

随机推荐

  1. Linux下mysql新建账号及权限设置

    http://www.cnblogs.com/eczhou/archive/2012/07/12/2588187.html 1.权限赋予 说明:mysql部署在服务器A上,内网上主机B通过客户端工具连 ...

  2. 菜鸟的IT生活4

    今天主要复习了以前的内容,输入输出,数据类型,运算符,顺序语句,分支语句等等,把几个不太连贯跟没上传过的传一下,以后加深下印象,加油!

  3. Android之监听手机软键盘弹起与关闭

    背景: 在很多App开发过程中需要在Activity中监听Android设备的软键盘弹起与关闭,但是Android似乎没有提供相关的的监听API给我们来调用,本文提供了一个可行的办法来监听软键盘的弹起 ...

  4. appid账号创建及A D-U-M-S码创建

    APPID  企业账号创建流程及A D-U-N-S® Number 码创建(需要等2到3周时间,可以先创建成个人账号然后升级成公司账号)   021 26107504  邓白氏编码  1.需要VISI ...

  5. HTML 学习笔记 CSS3 (文本效果)

    text-shadow 语法 text-shadow : none | <length> none | [<shadow>, ] * <shadow> 或none ...

  6. Python的高级特性12:类的继承

    在面向对象的程序设计中,继承(Inheritance)允许子类从父类那里获得属性和方法,同时子类可以添加或者重载其父类中的任何方法.在C++和Java的对象模型中,子类的构造函数会自动调用父类的构造函 ...

  7. 移动开发webapp开发常用meta设置手机浏览器全屏模式

    1.WebApp全屏模式: <meta name="viewport" content="width=device-width,initial-scale=1.0, ...

  8. win7的优化-1:隐藏我的电脑导航栏里的收藏等项目

    1. Type regedit in RUN or Start Menu search box and press Enter. It'll open Registry Editor. 2. Now ...

  9. Visual Studio 2012 cannot identify IHttpActionResult

    使用ASP.NET Web API构造基于restful风格web services,IHttpActionResult是一个很好的http结果返回接口. 然而发现在vs2012开发环境中,Syste ...

  10. android:ToolBar详解(手把手教程)(转)

    来源 http://blog.mosil.biz/2014/10/android-toolbar/ 编辑推荐:稀土掘金,这是一个针对技术开发者的一个应用,你可以在掘金上获取最新最优质的技术干货,不仅仅 ...