hdu 1114 Piggy-Bank
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 14395 Accepted Submission(s): 7313
ACM can do anything, a budget must be prepared and the necessary
financial support obtained. The main income for this action comes from
Irreversibly Bound Money (IBM). The idea behind is simple. Whenever some
ACM member has any small money, he takes all the coins and throws them
into a piggy-bank. You know that this process is irreversible, the coins
cannot be removed without breaking the pig. After a sufficiently long
time, there should be enough cash in the piggy-bank to pay everything
that needs to be paid.
But there is a big problem with
piggy-banks. It is not possible to determine how much money is inside.
So we might break the pig into pieces only to find out that there is not
enough money. Clearly, we want to avoid this unpleasant situation. The
only possibility is to weigh the piggy-bank and try to guess how many
coins are inside. Assume that we are able to determine the weight of the
pig exactly and that we know the weights of all coins of a given
currency. Then there is some minimum amount of money in the piggy-bank
that we can guarantee. Your task is to find out this worst case and
determine the minimum amount of cash inside the piggy-bank. We need your
help. No more prematurely broken pigs!
input consists of T test cases. The number of them (T) is given on the
first line of the input file. Each test case begins with a line
containing two integers E and F. They indicate the weight of an empty
pig and of the pig filled with coins. Both weights are given in grams.
No pig will weigh more than 10 kg, that means 1 <= E <= F <=
10000. On the second line of each test case, there is an integer number N
(1 <= N <= 500) that gives the number of various coins used in
the given currency. Following this are exactly N lines, each specifying
one coin type. These lines contain two integers each, Pand W (1 <= P
<= 50000, 1 <= W <=10000). P is the value of the coin in
monetary units, W is it's weight in grams.
exactly one line of output for each test case. The line must contain
the sentence "The minimum amount of money in the piggy-bank is X." where
X is the minimum amount of money that can be achieved using coins with
the given total weight. If the weight cannot be reached exactly, print a
line "This is impossible.".
#include <cstdio>
#include <iostream>
#include <queue>
#include <cstring>
#include <algorithm>
using namespace std ;
int n, m, E, F ;
int dp[] ;
int v[], w[] ;
int getans(int sx)
{
int& res = dp[sx] ;
if(res != -) return res ;
res = << ;
for(int i = ; i <= n; ++i)
if(sx >= w[i]) res = min(res, getans(sx - w[i]) + v[i]) ;
return res ;
}
int main()
{
int _ ;
scanf("%d",&_) ;
while(_--)
{
memset(dp, -, sizeof dp) ;
scanf("%d%d%d",&E,&F,&n) ;
for(int i = ; i <= n; ++i)
scanf("%d%d",&v[i],&w[i]) ;
int s = F - E ;
dp[] = ;
int ans = getans(s) ;
if(ans == << ) printf("This is impossible.\n") ;
else printf("The minimum amount of money in the piggy-bank is %d.\n",ans) ;
}
}
递推
#include <cstdio>
#include <iostream>
#include <queue>
#include <cstring>
#include <algorithm>
using namespace std ;
int dp[] ;
int v[], w[] ;
int main()
{
int _ ;
scanf("%d",&_) ;
while(_--)
{
int n, E, F ;
scanf("%d%d%d",&E,&F,&n) ;
int s = F - E ;
for(int i = ; i <= n ;++i)
scanf("%d%d",&v[i],&w[i]) ;
for(int i = ; i <= ; ++i)
dp[i] = << ;
dp[] = ;
for(int i = ; i <= n; ++i)
for(int j = w[i]; j <= s; ++j)
dp[j] = min(dp[j],dp[j - w[i]] + v[i]) ;
if(dp[s] == << ) printf("This is impossible.\n") ;
else printf("The minimum amount of money in the piggy-bank is %d.\n",dp[s]) ;
}
}
hdu 1114 Piggy-Bank的更多相关文章
- Piggy-Bank(HDU 1114)背包的一些基本变形
Piggy-Bank HDU 1114 初始化的细节问题: 因为要求恰好装满!! 所以初始化要注意: 初始化时除了F[0]为0,其它F[1..V]均设为−∞. 又这个题目是求最小价值: 则就是初始化 ...
- 怒刷DP之 HDU 1114
Piggy-Bank Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit S ...
- hdu 1114 dp动规 Piggy-Bank
Piggy-Bank Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit S ...
- HDOJ(HDU).1114 Piggy-Bank (DP 完全背包)
HDOJ(HDU).1114 Piggy-Bank (DP 完全背包) 题意分析 裸的完全背包 代码总览 #include <iostream> #include <cstdio&g ...
- HDU 1114 Piggy-Bank(一维背包)
题目地址:HDU 1114 把dp[0]初始化为0,其它的初始化为INF.这样就能保证最后的结果一定是满的,即一定是从0慢慢的加上来的. 代码例如以下: #include <algorithm& ...
- HDU 1114 完全背包 HDU 2191 多重背包
HDU 1114 Piggy-Bank 完全背包问题. 想想我们01背包是逆序遍历是为了保证什么? 保证每件物品只有两种状态,取或者不取.那么正序遍历呢? 这不就正好满足完全背包的条件了吗 means ...
- --hdu 1114 Piggy-Bank(完全背包)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1114 AC code: #include<bits/stdc++.h> using nam ...
- [HDU 1114] Piggy-Bank (动态规划)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1114 简单完全背包,不多说. #include <cstdio> #include < ...
- HDU 1114 Piggy-Bank(完全背包)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1114 题目大意:根据储钱罐的重量,求出里面钱最少有多少.给定储钱罐的初始重量,装硬币后重量,和每个对应 ...
- (完全背包) Piggy-Bank (hdu 1114)
题目大意: 告诉你钱罐的初始重量和装满的重量, 你可以得到这个钱罐可以存放钱币的重量,下面有 n 种钱币, n 组, 每组告诉你这种金币的价值和它的重量,问你是否可以将这个钱 ...
随机推荐
- 转载jQuery图片放大插件[twiPicZoom]
转载http://xuzhihong1987.blog.163.com/blog/static/26731587201312821725913/ 功能说明: 双击查看大图,鼠标滚动放大缩小,能够切换到 ...
- struts2拦截器+监听器 .
一.拦截器是怎么实现: 实际上它是用Java中的动态代理来实现的 二.拦截器在Struts2中的应用 对于Struts2框架而言,正是大量的内置拦截器完成了大部分操作.像params拦截器将http请 ...
- osg::NodeVisitor中计算一个节点对应的世界变换矩阵、法向量、顶点坐标
class MyNodeVisitor:public osg::NodeVisitor { pulic: MyNodeVisitor():osg::NodeVisitor(osg::NodeVisit ...
- 简易qq对话框
//本程序由QT5 creator编译可运行 //dialog.h 1 #ifndef DIALOG_H #define DIALOG_H #include <QDialog> class ...
- Swift - 2.3的代码到3.0的转变
分享一下学习新语法的技巧:用Xcode8打开自己的Swift2.3的项目,选择Edit->Convert->To Current Swift Syntax- 让Xcode帮我们把Swift ...
- EmguCV学习 与opencv的区别和联系
openCV是因特尔的一个开源的视觉库,里面几乎包含了所有的图像处理的经典算法,并且采用C和少量的C++编写,运行效率很高,对于做图像处理这方面工作的,认识opencv是必须的工作.不过opencv有 ...
- oracle一点记录
查看数据库实例名(SERVICE_NAME): sql: select instance_name from v$instance; 如何知道oracle客户端是32位还是64的.windows下启动 ...
- 【翻译八】java-内存一致性错误
Memory Consistency Errors Memory consistency errors occur when different threads have inconsistent v ...
- 在python多进程中使用manager和Barrier
注意:Barrier是PYTHON3才有的功能,在2中无法测试. #!/usr/bin/env python # -*- coding: utf-8 -*- import multiprocessin ...
- PMP 第十一章 项目风险管理
1规划风险管理 2识别风险 3 风险定性分析 4风险定量分析 5规划风险应对 6监控风险 1.项目风险是什么?已知未知风险.未知未知风险对应应急储备和管理储备的关系.风险承受力和风险偏好是什么? 2. ...