基于SURF特征的目标检测
转战matlab了。步骤说一下:
目标图obj 含目标的场景图scene
0. 载入图像
- 分别检测SURF特征点
- 分别提取SURF描述子,即特征向量
- 用两个特征相互匹配
- 利用匹配结果计算两者之间的transform关系tform
- 根据obj位置与变换关系tform,在scene图上框出obj
代码,来自matlab,http://localhost:9090/vision/gs/object-detection-and-tracking.html#btt5qyu
%step1:读取图片
%读取object图片
boxImage = imread('stapleRemover.jpg');
%读取场景图片
sceneImage = imread('clutteredDesk.jpg');
%step2:检测特征点
boxPoints = detectSURFFeatures(boxImage);
scenePoints = detectSURFFeatures(sceneImage);
% figure; imshow(boxImage);
% title('Box Image中最强的100个feature points');
% hold on;
% plot(boxPoints.selectStrongest(100));
%step3 extract feature descriptors 提取出特征的描述子
%使用extractFeatures(),具体的feature类型是通过boxPoints位置的参数指定的,这里是SURF
%烂设计,为什么extractFeatures输入了boxPoints后,还要返回boxPoints?
[boxFeatures, boxPoints] = extractFeatures(boxImage, boxPoints);
[sceneFeatures, scenePoints] = extractFeatures(sceneImage, scenePoints);
%step4 find putative point matches
%Match the features using their descriptors.
boxPairs = matchFeatures(boxFeatures, sceneFeatures);
%Display putatively matched features.
matchedBoxPoints = boxPoints(boxPairs(:,1), :);
matchedScenePoints = scenePoints(boxPairs(:,2),:);
figure;
showMatchedFeatures(boxImage, sceneImage, matchedBoxPoints, matchedScenePoints, 'montage');
title('Putatively Matched Points (Including Outliers)');
%step5 locate the Object in the Scene Using Putative Matches
[tform, inlierBoxPoints, inlierScenePoints] = ...
estimateGeometricTransform(matchedBoxPoints, matchedScenePoints, 'affine');
figure;
showMatchedFeatures(boxImage, sceneImage, inlierBoxPoints, ...
inlierScenePoints, 'montage');
title('Matched Points (Inliers Only)');
%Get the bounding polygon of the reference image.
boxPolygon = [1, 1;... % top-left
size(boxImage,2), 1; ... % top-right
size(boxImage, 2), size(boxImage, 1); ... % bottom-right
1, size(boxImage, 1); ... % bottom-left
1, 1]; % top-left again to close the polygon
% transform the polygon into the coordinate system of the target image
%将多边形变换到目标图片上,变换的结果表示了物体的位置
newBoxPolygon = transformPointsForward(tform, boxPolygon);
%display the detected object 显示被检测到的物体
figure; imshow(sceneImage);
hold on;
line(newBoxPolygon(:, 1), newBoxPolygon(:, 2), 'Color', 'y');
title('Detected Box');
基于SURF特征的目标检测的更多相关文章
- #Deep Learning回顾#之基于深度学习的目标检测(阅读小结)
原文链接:https://www.52ml.net/20287.html 这篇博文主要讲了深度学习在目标检测中的发展. 博文首先介绍了传统的目标检测算法过程: 传统的目标检测一般使用滑动窗口的框架,主 ...
- AAAI2019 | 基于区域分解集成的目标检测 论文解读
Object Detection based on Region Decomposition and Assembly AAAI2019 | 基于区域分解集成的目标检测 论文解读 作者 | 文永亮 学 ...
- 基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN,Faster R-CNN
基于深度学习的目标检测技术演进:R-CNN.Fast R-CNN,Faster R-CNN object detection我的理解,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别.obj ...
- OpenCV中基于HOG特征的行人检测
目前基于机器学习方法的行人检测的主流特征描述子之一是HOG(Histogram of Oriented Gradient, 方向梯度直方图).HOG特征是用于目标检测的特征描述子,它通过计算和统计图像 ...
- 基于SURF特征的图像与视频拼接技术的研究和实现(一)
基于SURF特征的图像与视频拼接技术的研究和实现(一) 一直有计划研究实时图像拼接,但是直到最近拜读西电2013年张亚娟的<基于SURF特征的图像与视频拼接技术的研究和实现>,条 ...
- 基于Haar特征Adaboost人脸检测级联分类
基于Haar特征Adaboost人脸检测级联分类 基于Haar特征Adaboost人脸检测级联分类,称haar分类器. 通过这个算法的名字,我们能够看到这个算法事实上包括了几个关键点:Haar特征.A ...
- 第十九节、基于传统图像处理的目标检测与识别(词袋模型BOW+SVM附代码)
在上一节.我们已经介绍了使用HOG和SVM实现目标检测和识别,这一节我们将介绍使用词袋模型BOW和SVM实现目标检测和识别. 一 词袋介绍 词袋模型(Bag-Of-Word)的概念最初不是针对计算机视 ...
- 第十八节、基于传统图像处理的目标检测与识别(HOG+SVM附代码)
其实在深度学习中我们已经介绍了目标检测和目标识别的概念.为了照顾一些没有学过深度学习的童鞋,这里我重新说明一次:目标检测是用来确定图像上某个区域是否有我们要识别的对象,目标识别是用来判断图片上这个对象 ...
- 基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN
object detection我的理解,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别.object detection要解决的问题就是物体在哪里,是什么这整个流程的问题.然而,这个问题 ...
随机推荐
- 在SecureCRT中使用rz和sz传输文件
首先检查Centos中有没有安装 lrzsz sudo yum install lrzsz 使用yum install的时候碰到一个问题, 不知道是否和虚拟机环境有关 Existing lock /v ...
- AI图片剪切
来源:http://tieba.baidu.com/p/1203332701?pid=14163166977&cid=78618096662&from=prin#78618096662 ...
- DEDECMS之八 漏洞错误和疑难杂症
1.dedecms文章加粗b属性后出现strong或者b标签修改 dedecms的文章,如果设置了加粗的属性后,文章标题那会自动添加一个strong或者是b标签,如何去掉呢,方法如下: a.更改自动添 ...
- [MetaHook] BaseUI hook
Hook IBaseUI function. #include <metahook.h> #include <IBaseUI.h> IBaseUI *g_pBaseUI = ; ...
- unix环境高级编程基础知识之第一篇
陆陆续续看完了圣经第一章,熟悉了unix的整个编程流程,c语言的用处在这里得到伸张. 从unix的体系结构,原来操作系统包括内核及一些其他软件,我们常常误称为linux内核为操作系统,这俨然成为一种共 ...
- Linux进程间通信之管道
1,进程间通信 (IPC ) Inter-Process Communication 比较好理解概念的就是进程间通信就是在不同进程之间传播或交换信息. 2,linux下IPC机制的分类:管道.信号.共 ...
- [转] Asp.net vNext webapi 自托管
[声明]本文转自:http://www.cnblogs.com/ListenCode/p/4206204.html 转载需注明! 微软推出的Asp.net vNext(asp.net 5.0)的其中的 ...
- Oracle中序列(SEQUENCE)的使用一例
曾经在触发器中使用序列(SEQUENCE): create or replace trigger TRI_SUPPLIER before insert on SUPPLIER for each row ...
- 解决问题:由于扩展配置问题而无法提供您请求的页面。如果该页面是脚本,请添加处理程序。如果应下载文件,请添加 MIME 映射。
WindowServer2012服务器,添加角色安装完.netframework和iis之后,运行aspx页面就报如下错误: HTTP 错误 404.3 - Not Found 由于扩展配置问题而无法 ...
- redis入门配置
简介: Redis是Nosql中比较出名的,分布式数据库缓存,提升相应的速度,降低对数据库的访问! Redis是一种高级key-value数据库.它跟memcached类似,不过数据可以持久化,(永久 ...