Problem Description
XXX is very interested in algorithm. After learning the Prim algorithm and Kruskal algorithm of minimum spanning tree, XXX finds that there might be multiple solutions. Given an undirected weighted graph with n (1<=n<=100) vertexes and m (0<=m<=1000) edges, he wants to know the number of minimum spanning trees in the graph.
 
Input
There are no more than 15 cases. The input ends by 0 0 0.
For each case, the first line begins with three integers --- the above mentioned n, m, and p. The meaning of p will be explained later. Each the following m lines contains three integers u, v, w (1<=w<=10), which describes that there is an edge weighted w between vertex u and vertex v( all vertex are numbered for 1 to n) . It is guaranteed that there are no multiple edges and no loops in the graph.
 
Output
For each test case, output a single integer in one line representing the number of different minimum spanning trees in the graph.
The answer may be quite large. You just need to calculate the remainder of the answer when divided by p (1<=p<=1000000000). p is above mentioned, appears in the first line of each test case.
 
Sample Input
5 10 12
2 5 3
2 4 2
3 1 3
3 4 2
1 2 3
5 4 3
5 1 3
4 1 1
5 3 3
3 2 3
0 0 0
 
Sample Output
4
 
Source
 
Recommend
zhoujiaqi2010   |   We have carefully selected several similar problems for you:  5831 5830 5829 5828 5827 

题意是给定n个点,m条边的无向图,求最小生成树的个数对p取模。

用kruscal计算最小生成树时,每次取连接了两个不同联通块的最小的边。也就是先处理d1条c1长度的边,再处理d2条c2长度的边。长度相同的边无论怎么选,最大联通情况都是固定的。
分别对ci长度的边产生的几个联通块计算生成树数量再乘起来,然后把这些联通块缩点,再计算ci+1长度的边。

生成树计数用Matrix-Tree定理,上一篇是无重边的,这题的缩点后是会产生重边的,Matrix-tree也适用:

Kirchhoff矩阵任意n-1阶子矩阵的行列式的绝对值就是无向图的生成树的数量。

Kirchhoff矩阵的定义是度数矩阵-邻接矩阵。

1、G的度数矩阵D[G]:n*n的矩阵,Dii等于Vi的度数,其余为0。
2、G的邻接矩阵A[G]:n*n的矩阵, Vi、Vj之间有边直接相连,则 Aij=ij之间的边数,否则为0。

并查集fa[i]是当前长度之前,节点所属的联通块,ka[i]是当前长度的边连接后它在的联通块。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;
typedef long long ll;
const int N=;
const int M=;
ll n,m,p,ans;
vector<int>gra[N];
struct edge{
int u,v,w;
}e[M];
int cmp(edge a,edge b){
return a.w<b.w;
}
ll mat[N][N],g[N][N];
ll fa[N],ka[N],vis[N];
ll det(ll c[][N],ll n){
ll i,j,k,t,ret=;
for(i=;i<n;i++)
for(j=;j<n;j++) c[i][j]%=p;
for(i=; i<n; i++){
for(j=i+; j<n; j++)
while(c[j][i]){
t=c[i][i]/c[j][i];
for(k=i; k<n; k++)
c[i][k]=(c[i][k]-c[j][k]*t)%p;
swap(c[i],c[j]);
ret=-ret;
}
if(c[i][i]==)
return 0L;
ret=ret*c[i][i]%p;
}
return (ret+p)%p;
}
ll find(ll a,ll f[]){
return f[a]==a?a:find(f[a],f);
}
void matrix_tree(){//对当前长度的边连接的每个联通块计算生成树个数
for(int i=;i<n;i++)if(vis[i]){//当前长度的边连接了i节点
gra[find(i,ka)].push_back(i);//将i节点压入所属的联通块
vis[i]=;//一边清空vis数组
}
for(int i=;i<n;i++)
if(gra[i].size()>){//联通块的点数为1时生成树数量是1
memset(mat,,sizeof mat);//清空矩阵
int len=gra[i].size();
for(int j=;j<len;j++)
for(int k=j+;k<len;k++){//构造这个联通块的矩阵(有重边)
int u=gra[i][j],v=gra[i][k];
if(g[u][v]){
mat[k][j]=(mat[j][k]-=g[u][v]);
mat[k][k]+=g[u][v];mat[j][j]+=g[u][v];
}
}
ans=ans*det(mat,gra[i].size()-)%p;
for(int j=;j<len;j++)fa[gra[i][j]]=i;//缩点
}
for(int i=;i<n;i++)
{
gra[i].clear();
ka[i]=fa[i]=find(i,fa);
}
}
int main(){
while(scanf("%lld%lld%lld",&n,&m,&p),n){
for(int i=;i<m;i++){
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
u--;v--;
e[i]=(edge){u,v,w};
}
sort(e,e+m,cmp);
memset(g,,sizeof g);
ans=;
for(ll i=;i<n;i++)ka[i]=fa[i]=i;
for(ll i=;i<=m;i++){//边从小到大加入
if(i&&e[i].w!=e[i-].w||i==m)//处理完长度为e[i-1].w的所有边
matrix_tree();//计算生成树
ll u=find(e[i].u,fa),v=find(e[i].v,fa);//连的两个缩点后的点
if(u!=v)//如果不是一个
{
vis[v]=vis[u]=;
ka[find(u,ka)]=find(v,ka);//两个分量在一个联通块里。
g[u][v]++,g[v][u]++;//邻接矩阵
}
}
int flag=;
for(int i=;i<n;i++)if(fa[i]!=fa[i-])flag=;
printf("%lld\n",flag?ans%p:);//注意p可能为1,这样m=0时如果ans不%p就会输出1
}
}

  

【HDU 4408】Minimum Spanning Tree(最小生成树计数)的更多相关文章

  1. HDU 4408 Minimum Spanning Tree 最小生成树计数

    Minimum Spanning Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  2. hdu 4408 Minimum Spanning Tree

    Problem Description XXX is very interested in algorithm. After learning the Prim algorithm and Krusk ...

  3. 数据结构与算法分析–Minimum Spanning Tree(最小生成树)

    给定一个无向图,如果他的某个子图中,任意两个顶点都能互相连通并且是一棵树,那么这棵树就叫做生成树(spanning tree). 如果边上有权值,那么使得边权和最小的生成树叫做最小生成树(MST,Mi ...

  4. 【算法】关于图论中的最小生成树(Minimum Spanning Tree)详解

    本节纲要 什么是图(network) 什么是最小生成树 (minimum spanning tree) 最小生成树的算法 什么是图(network)? 这里的图当然不是我们日常说的图片或者地图.通常情 ...

  5. Educational Codeforces Round 3 E. Minimum spanning tree for each edge 最小生成树+树链剖分+线段树

    E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...

  6. 说说最小生成树(Minimum Spanning Tree)

    minimum spanning tree(MST) 最小生成树是连通无向带权图的一个子图,要求 能够连接图中的所有顶点.无环.路径的权重和为所有路径中最小的. graph-cut 对图的一个切割或者 ...

  7. 最小生成树(Minimum Spanning Tree)——Prim算法与Kruskal算法+并查集

    最小生成树——Minimum Spanning Tree,是图论中比较重要的模型,通常用于解决实际生活中的路径代价最小一类的问题.我们首先用通俗的语言解释它的定义: 对于有n个节点的有权无向连通图,寻 ...

  8. 多校 HDU - 6614 AND Minimum Spanning Tree (二进制)

    传送门 AND Minimum Spanning Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 ...

  9. CF# Educational Codeforces Round 3 E. Minimum spanning tree for each edge

    E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...

随机推荐

  1. java 28 - 2 设计模式之 模版设计模式

    模版设计模式 模版设计模式概述 模版方法模式就是定义一个算法的骨架,而将具体的算法延迟到子类中来实现 优点 使用模版方法模式,在定义算法骨架的同时,可以很灵活的实现具体的算法,满足用户灵活多变的需求 ...

  2. PAT 1024. 科学计数法 (20)

    科学计数法是科学家用来表示很大或很小的数字的一种方便的方法,其满足正则表达式[+-][1-9]"."[0-9]+E[+-][0-9]+,即数字的整数部分只有1位,小数部分至少有1位 ...

  3. 解决ssh-connect-to-host-github-com-port-22-connection-timed-out

    PC:~$ ssh git@github.com ssh: connect to host github.com port 22: Connection timed out 解决办法:(linux下) ...

  4. Parallel.Invoke并行你的代码

    Parallel.Invoke并行你的代码 使用Parallel.Invoke并行你的代码 优势和劣势 使用Parallel.Invoke的优势就是使用它执行很多的方法很简单,而不用担心任务或者线程的 ...

  5. nginx架构

    nginx平台初探(100%)  

  6. NOI2018准备Day7

    昨天没写,就不补了. 晚上追剧到3点,今天困死...... 上午做了一道水题,然后找一个程序的神奇的错误花了3个小时 下午做了3道递归吧,稍微难一点儿的黄金题就卡了 刚开始学递归时没多做题练练,现在 ...

  7. JavaScript Array

    1.常用方法 // 数组构造 var a = new Array(20); // 长度为20的数组 var b = new Array('red', 'blue', 'white'); var c = ...

  8. 分享:计算机图形学期末作业!!利用WebGL的第三方库three.js写一个简单的网页版“我的世界小游戏”

    这几天一直在忙着期末考试,所以一直没有更新我的博客,今天刚把我的期末作业完成了,心情澎湃,所以晚上不管怎么样,我也要写一篇博客纪念一下我上课都没有听,还是通过强大的度娘完成了我的作业的经历.(当然作业 ...

  9. Android编译报Errors running builder 'Android Pre Compiler' on project 'XXX' java.lang.NullPointerException

    编译android时,遇到报错:Errors occurred during the build.Errors running builder 'Android Pre Compiler' on pr ...

  10. 基于DDD的.NET开发框架 - ABP仓储实现

    返回ABP系列 ABP是“ASP.NET Boilerplate Project (ASP.NET样板项目)”的简称. ASP.NET Boilerplate是一个用最佳实践和流行技术开发现代WEB应 ...