描述

在数学上,斐波那契数列(Fibonacci Sequence),是以递归的方法来定义:

F0 = 0

F1 = 1

Fn = Fn - 1 + Fn - 2

用文字来说,就是斐波那契数列由0和1开始,之后的斐波那契数就由之前的两数相加。首几个斐波那契数是:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946,………………

特别指出:0不是第一项,而是第零项。

在西方,最先研究这个数列的人是比萨的列奥纳多(又名斐波那契),他描述兔子生长的数目时用上了这数列。

n       第一个月有一对刚诞生的兔子

n       第两个月之后它们可以生育

n       每月每对可生育的兔子会诞生下一对新兔子

n       兔子永不死去

假设在n月有新生及可生育的兔子总共a对,n+1月就总共有b对。在n+2月必定总共有a+b对:因为在n+2月的时候,所有在n月就已存在的a对兔子皆已可以生育并诞下a对后代;同时在前一月(n+1月)之b对兔子中,在当月属于新诞生的兔子尚不能生育。

现请以较短的时间,求出斐波那契数列第n项数值,0≤n≤40。

输入

斐波那契数列项数n,0≤n≤40。

输出

斐波那契数列第n项数值

样例输入

4

样例输出

3

 
1.递归方式

 #include<stdio.h>
int func(int n);
int main()
{
int num;
while (scanf("%d",&num) == )
{
printf("%d\n", func(num));
}
} int func(int n)
{
if (n < )
return ;
if (n == || n == )
return ;
if (n > )
return func(n - ) + func(n - );
}

2.数组方式

 #include <stdio.h>
#include <stdlib.h> int func(int n);
int main()
{
int num;
while (scanf("%d",&num) == )
{
printf("%d\n", func(num));
}
}
int func(int n)
{
if (n < )
return ;
if (n == || n == )
return ;
int *a;
a = (int*)malloc(sizeof(int)*n);
*a = *(a + ) = ;
for (int i = ; i < n; i++)
{
a[i] = a[i - ] + a[i - ];
}
int res = a[n - ];
free(a);
return res;
}

3.迭代方式

 #include <stdio.h>
int func(int n);
int main()
{
int num,f;
while (scanf("%d", &num) == )
{
f = func(num);
printf("%d\n", f);
}
}
int func(int n)
{
if (n < )
return ;
if (n == || n == )
return ;
int a1 = , a2 = , a3 = ;
for (int i = ; i < n; i++)
{
a3 = a2 + a1;
a1 = a2;
a2 = a3;
}
return a3;
}

ACM2 斐波那契数列的更多相关文章

  1. C#求斐波那契数列第30项的值(递归和非递归)

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...

  2. 斐波拉契数列加强版——时间复杂度O(1),空间复杂度O(1)

    对于斐波拉契经典问题,我们都非常熟悉,通过递推公式F(n) = F(n - ) + F(n - ),我们可以在线性时间内求出第n项F(n),现在考虑斐波拉契的加强版,我们要求的项数n的范围为int范围 ...

  3. js中的斐波那契数列法

    //斐波那契数列:1,2,3,5,8,13…… //从第3个起的第n个等于前两个之和 //解法1: var n1 = 1,n2 = 2; for(var i=3;i<101;i++){ var ...

  4. 剑指Offer面试题:8.斐波那契数列

    一.题目:斐波那契数列 题目:写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项.斐波那契数列的定义如下: 二.效率很低的解法 很多C/C++/C#/Java语言教科书在讲述递归函数的时 ...

  5. 算法: 斐波那契数列C/C++实现

    斐波那契数列: 1,1,2,3,5,8,13,21,34,....     //求斐波那契数列第n项的值 //1,1,2,3,5,8,13,21,34... //1.递归: //缺点:当n过大时,递归 ...

  6. 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]

    P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...

  7. Python递归及斐波那契数列

    递归函数 在函数内部,可以调用其他函数.如果一个函数在内部调用自身本身,这个函数就是递归函数.举个例子,我们来计算阶乘 n! = 1 * 2 * 3 * ... * n,用函数 fact(n)表示,可 ...

  8. 简单Java算法程序实现!斐波那契数列函数~

    java编程基础--斐波那契数列 问题描述:一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 思路:可能出现的情况:(1) n=1 ,一种方法 ;(2)n=2 ...

  9. js 斐波那契数列(兔子问题)

    对于JS初学者来说,斐波那契数列一直是个头疼的问题,总是理不清思路. 希望看完这篇文章之后会对你有帮助. 什么是斐波那契数列 : 答: 斐波那契数列,又称黄金分割数列.因数学家列昂纳多·斐波那契(Le ...

随机推荐

  1. joomla \libraries\joomla\session\session.php 反序列化截断畸形字符串导致对象注入漏洞

    catalog . 漏洞描述 . PHP SESSION持久化 . PHP 序列化/反序列化内核实现 . 漏洞代码分析 . POC构造技巧 . 防御方案 . Code Pathc方案 1. 漏洞描述 ...

  2. [U3D 导出Xcode工程包,用Xcode给U3D脚本传递参数]

    1.导出Xcode工程 File->Building and setting,导出IOS工程(有错误会失败) 2.运行Xcode工程,在Classes文件夹的UI文件夹里,早到UnityAppC ...

  3. gvim e303 无法打开 “[未命名]“的交换文件,恢复将不可能

    今天vim出现:“gvim e303 无法打开 “[未命名]“的交换文件,恢复将不可能” 解决办法: 修改你的.vimrc,增加下面的一行: set directory=.,$TEMP "默 ...

  4. 《C陷阱与缺陷》杂记

    第一章 词法"陷阱" 1.4整型常量 如果一个整型常量的第一个字符是数字0,那么该常量将被视作八进制数.因此,10与010的含义截然不同.需要注意这种情况,有时候在上下文为了格式& ...

  5. Redis学习-开始

    C:\Program Files\Redis\redis-cli.exe 使用servicestack.redis class Program { static void Main(string[] ...

  6. Bootstrap基本类和组件学习二

    一.联系方式:(自带鼠标的移动动画) 1.头文件CSS <link rel="shortcut icon" href="favicon.ico"> ...

  7. .net4.0及Silverlight_Tools for vs2008sp1安装失败解决办法

    安装.net framework 4.0失败,出现HRESULT 0xc8000222错误代码 1.开始-运行-输入cmd,运行命令     net stop WuAuServ 2.开始-运行-输入  ...

  8. (转)Java API设计清单

    转自: 伯乐在线 Java API设计清单 英文原文 TheAmiableAPI 在设计Java API的时候总是有很多不同的规范和考量.与任何复杂的事物一样,这项工作往往就是在考验我们思考的缜密程度 ...

  9. CSS实时编辑显示

    方法 CSS实时编辑显示:通过display:block让css文本显示出来,再加上contentEditable使文本可编辑 <!DOCTYPE html> <html> & ...

  10. delphi---控件使用

    1.TBitBtn控件 属性:Glyph,指定要显示的位图:    Layout ,设置位图在按钮的位置:Kind,要想用自设位图,这个属性要设置bkCustom; 2.TTreeView TTree ...