[问题2014S13] 解答
[问题2014S13] 解答
(1) 先证必要性:若 \(A=LU\) 是 非异阵 \(A\) 的 \(LU\) 分解,则 \(L\) 是主对角元全部等于 1 的下三角阵,\(U\) 是主对角元全部非零的上三角阵. 由 Cauchy-Binet 公式知 \[|A_k|=|L_k|\cdot|U_k|=|U_k|\neq 0,\,\,k=1,2,\cdots,n,\] 其中 \(|A_k|,|L_k|,|U_k|\) 分别表示 \(A,L,U\) 的第 \(k\) 个顺序主子式.
再证充分性以及分解的唯一性:我们对 \(A\) 的阶数 \(n\) 进行归纳. \(n=1\) 时, 结论显然成立. 设阶数 \(<n\) 时, 结论成立. 注意到 \(A\) 的第 \(n-1\) 个顺序主子阵 \(A_{n-1}\) 满足条件: 它的 \(n-1\) 个顺序主子式全部非零,故由归纳假设,\(A_{n-1}\) 存在唯一的 \(LU\) 分解:\[A_{n-1}=L_{n-1}U_{n-1},\] 其中 \(L_{n-1}\) 是主对角元全部等于 1 的 \(n-1\) 阶下三角阵,\(U_{n-1}\) 是主对角元全部非零的 \(n-1\) 阶上三角阵. 设 \[A=\begin{bmatrix} A_{n-1} & \alpha \\ \beta' & a_{nn} \end{bmatrix}=\begin{bmatrix} L_{n-1} & 0 \\ x' & 1 \end{bmatrix}\begin{bmatrix} U_{n-1} & y \\ 0 & z \end{bmatrix}=\begin{bmatrix} L_{n-1}U_{n-1} & L_{n-1}y \\ x'U_{n-1} & x'y+z \end{bmatrix},\] 其中 \(\alpha,\beta,x,y\) 为 \(n-1\) 维列向量, \(z\) 为数. 由此可得:\[ \alpha=L_{n-1}y,\,\, \beta'=x'U_{n-1},\,\,a_{nn}=x'y+z.\] 因为 \(L_{n-1},U_{n-1}\) 为非异阵, 由上式可唯一解得:\[y=L_{n-1}^{-1}\alpha,\,\,x'=\beta'U_{n-1}^{-1},\,\,z=a_{nn}-\beta'U_{n-1}^{-1}L_{n-1}^{-1}\alpha=a_{nn}-\beta'A_{n-1}^{-1}\alpha.\] 令 \[L=\begin{bmatrix} L_{n-1} & 0 \\ \beta'U_{n-1}^{-1} & 1 \end{bmatrix},\,\,U=\begin{bmatrix} U_{n-1} & L_{n-1}^{-1}\alpha \\ 0 & a_{nn}-\beta'A_{n-1}^{-1}\alpha \end{bmatrix},\] 则 \(A=LU\) 即为 \(A\) 的唯一的 \(LU\) 分解.
(2) 我们对 \(A\) 的阶数 \(n\) 进行归纳,来证明 Cholesky 分解的存在性和唯一性. \(n=1\) 时, 结论显然成立. 设阶数 \(<n\) 时, 结论成立. 注意到 \(A\) 的第 \(n-1\) 个顺序主子阵 \(A_{n-1}\) 也是正定实对称阵, 故由归纳假设,\(A_{n-1}\) 存在唯一的 Cholesky 分解:\[A_{n-1}=C_{n-1}'C_{n-1},\] 其中 \(C_{n-1}\) 是主对角元全大于零的 \(n-1\) 阶上三角阵. 设 \[A=\begin{bmatrix} A_{n-1} & \alpha \\ \alpha' & a_{nn} \end{bmatrix}=\begin{bmatrix} C'_{n-1} & 0 \\ x' & y \end{bmatrix}\begin{bmatrix} C_{n-1} & x \\ 0 & y \end{bmatrix}=\begin{bmatrix} C_{n-1}'C_{n-1} & C_{n-1}'x \\ x'C_{n-1} & x'x+y^2 \end{bmatrix},\] 其中 \(\alpha,\beta,x\) 为 \(n-1\) 维列向量, \(y\) 为数. 由此可得:\[ \alpha=C_{n-1}'x,\,\,a_{nn}=x'x+y^2.\] 由上式可唯一解得:\[x=(C_{n-1}')^{-1}\alpha,\]\[y^2=a_{nn}-\alpha'C_{n-1}^{-1}(C_{n-1}')^{-1}\alpha=a_{nn}-\alpha'A_{n-1}^{-1}\alpha=\frac{|A|}{|A_{n-1}|}>0,\,\,y=\sqrt{\frac{|A|}{|A_{n-1}|}}.\] 令 \[C=\begin{bmatrix} C_{n-1} & (C_{n-1}')^{-1}\alpha \\ 0 & \sqrt{\frac{|A|}{|A_{n-1}|}} \end{bmatrix},\] 则 \(A=C'C\) 即为 \(A\) 的唯一的 Cholesky 分解. \(\Box\)
[问题2014S13] 解答的更多相关文章
- 精选30道Java笔试题解答
转自:http://www.cnblogs.com/lanxuezaipiao/p/3371224.html 都 是一些非常非常基础的题,是我最近参加各大IT公司笔试后靠记忆记下来的,经过整理献给与我 ...
- 精通Web Analytics 2.0 (8) 第六章:使用定性数据解答”为什么“的谜团
精通Web Analytics 2.0 : 用户中心科学与在线统计艺术 第六章:使用定性数据解答"为什么"的谜团 当我走进一家超市,我不希望员工会认出我或重新为我布置商店. 然而, ...
- 【字符编码】Java字符编码详细解答及问题探讨
一.前言 继上一篇写完字节编码内容后,现在分析在Java中各字符编码的问题,并且由这个问题,也引出了一个更有意思的问题,笔者也还没有找到这个问题的答案.也希望各位园友指点指点. 二.Java字符编码 ...
- spring-stutrs求解答
这里贴上applicationContext里的代码: <?xml version="1.0" encoding="UTF-8"?> <bea ...
- JavaScript Bind()趣味解答 包懂~~
首先声明一下,这个解答是从Segmentfault看到的,挺有意思就记录下来.我放到最下面: bind() https://developer.mozilla.org/zh-CN/docs/Web/J ...
- CMMI4级实践中的5个经典问题及解答
这五个问题相当经典而且比较深,需要做过CMMI4.5级的朋友才能看懂这些问题.这5个问题是一位正在实践CMMI4级的朋友提出来的,而解答则是我的个人见解. 五个疑问是: A.流程,子流程部分不明白 ...
- 海边直播目标2017全国初中数学竞赛班课堂测试题解答-The Final
1. 设函数 $f(x) = 2^x(ax^2 + bx + c)$ 满足等式 $f(x+1) - f(x) = 2^x\cdot x^2$, 求 $f(1)$. 解答: 由 $f(x) = 2^x( ...
- 知乎大牛的关于JS解答
很多疑惑一扫而空.... http://www.zhihu.com/question/35905242?sort=created JS的单线程,浏览器的多进程,与CPU,OS的对位. 互联网移动的起起 ...
- [问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供)
[问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供) (1) 当 \(a=0\) 时,这是高代书复习题一第 33 题,可用升阶法和 Vander Monde 行列式来求解,其结果为 \[ ...
随机推荐
- 20145337 《Java程序设计》第二周学习总结
20145337 <Java程序设计>第二周学习总结 教材学习内容总结 Java可分基本类型与类类型: 基本类型分整数(short.int.long).字节(byte).浮点数(float ...
- Python格式化字符串
在编写程序的过程中,经常需要进行格式化输出,每次用每次查.干脆就在这里整理一下,以便索引. 格式化操作符(%) "%"是Python风格的字符串格式化操作符,非常类似C语言里的pr ...
- C# 模拟鼠标移动与点击
我们需要用到的mouse_event函数,位于user32.dll这个库文件里面,所以我们要先声明引用. [System.Runtime.InteropServices.DllImport(" ...
- java 截取pdf
最近在读一本电子书,pdf中频繁引用后文的内容(页码),必须实时的跳过去看,但是扫描版的pdf的页码往往从封面就开始计数,而且盗版还经常有一些做广告的页面,这就导致pdf reader 索引的页面并不 ...
- FlipView 索引为0 WP8.1
如果使用FlipView时,出现别的页面切换到含有FlipView的页面时(缓存此页面/MainPage),点击或者滑动FlipView,Flipview自动索引到0 的问题解决办法 1.对Flipv ...
- linq小笔记;
1.比较LINQ to Entities的AsQueryable和AsEnumerable方法 C#程序: 复制内容到剪贴板程序代码 using (testContext context = new ...
- Win8.1密钥
Win8.1 在线永久激活密钥一枚! 78BHN-M3KRH-PCP9W-HQJYR-Q9KHD [剩余次数:7K多+] 继续增加 [Key]:HPCJW-VGYW4-CR7W2-JG6Q7-K4Q ...
- java - 第一阶段总结
java - 第一阶段总结 递归 递归:能不用就不用,因为效率极低 package over; //递归 public class Fi { public static void main(Strin ...
- [SLAM]2D激光扫描匹配方法
1.Beam Model 2.Likehood field for k=1:size(zt,1) if zt(k,2)>0 d = -grid_dim/2; else d = grid_dim/ ...
- RDIFramework.NET ━ Web中打印的各种方案参考-欢迎补充
RDIFramework.NET ━ Web中打印的各种方案参考-欢迎补充 做Web开发的同志应该都深有体会,在web程序中打印不再象应用程序中那样便于控制了,web程序天生的一些特性造成了这个缺点, ...