MySQL(Python+ORM)
本篇对于Python操作MySQL主要使用两种方式:
- 原生模块 pymsql
- ORM框架 SQLAchemy
pymsql
pymsql是Python中操作MySQL的模块,其使用方法和MySQLdb几乎相同。
下载安装
|
1
|
pip3 install pymysql |
使用操作
1、执行SQL
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
#!/usr/bin/env python# -*- coding:utf-8 -*-import pymysql # 创建连接conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1')# 创建游标cursor = conn.cursor() # 执行SQL,并返回收影响行数effect_row = cursor.execute("update hosts set host = '1.1.1.2'") # 执行SQL,并返回受影响行数#effect_row = cursor.execute("update hosts set host = '1.1.1.2' where nid > %s", (1,)) # 执行SQL,并返回受影响行数#effect_row = cursor.executemany("insert into hosts(host,color_id)values(%s,%s)", [("1.1.1.11",1),("1.1.1.11",2)]) # 提交,不然无法保存新建或者修改的数据conn.commit() # 关闭游标cursor.close()# 关闭连接conn.close() |
2、获取新创建数据自增ID
|
1
2
3
4
5
6
7
8
9
10
11
12
13
|
#!/usr/bin/env python# -*- coding:utf-8 -*-import pymysql conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1')cursor = conn.cursor()cursor.executemany("insert into hosts(host,color_id)values(%s,%s)", [("1.1.1.11",1),("1.1.1.11",2)])conn.commit()cursor.close()conn.close() # 获取最新自增IDnew_id = cursor.lastrowid |
3、获取查询数据
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
#!/usr/bin/env python# -*- coding:utf-8 -*-import pymysql conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1')cursor = conn.cursor()cursor.execute("select * from hosts") # 获取第一行数据row_1 = cursor.fetchone() # 获取前n行数据# row_2 = cursor.fetchmany(3)# 获取所有数据# row_3 = cursor.fetchall() conn.commit()cursor.close()conn.close() |
注:在fetch数据时按照顺序进行,可以使用cursor.scroll(num,mode)来移动游标位置,如:
- cursor.scroll(1,mode='relative') # 相对当前位置移动
- cursor.scroll(2,mode='absolute') # 相对绝对位置移动
4、fetch数据类型
关于默认获取的数据是元祖类型,如果想要或者字典类型的数据,即:
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
#!/usr/bin/env python# -*- coding:utf-8 -*-import pymysql conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1') # 游标设置为字典类型cursor = conn.cursor(cursor=pymysql.cursors.DictCursor)r = cursor.execute("call p1()") result = cursor.fetchone() conn.commit()cursor.close()conn.close() |
SQLAchemy
SQLAlchemy是Python编程语言下的一款ORM框架,该框架建立在数据库API之上,使用关系对象映射进行数据库操作,简言之便是:将对象转换成SQL,然后使用数据API执行SQL并获取执行结果。
安装:
|
1
|
pip3 install SQLAlchemy |

SQLAlchemy本身无法操作数据库,其必须以来pymsql等第三方插件,Dialect用于和数据API进行交流,根据配置文件的不同调用不同的数据库API,从而实现对数据库的操作,如:
|
1
2
3
4
5
6
7
8
9
10
11
12
13
|
MySQL-Python mysql+mysqldb://<user>:<password>@<host>[:<port>]/<dbname> pymysql mysql+pymysql://<username>:<password>@<host>/<dbname>[?<options>] MySQL-Connector mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname> cx_Oracle oracle+cx_oracle://user:pass@host:port/dbname[?key=value&key=value...] 更多详见:http://docs.sqlalchemy.org/en/latest/dialects/index.html |
一、内部处理
使用 Engine/ConnectionPooling/Dialect 进行数据库操作,Engine使用ConnectionPooling连接数据库,然后再通过Dialect执行SQL语句。
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
|
#!/usr/bin/env python# -*- coding:utf-8 -*-from sqlalchemy import create_engine engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=5) # 执行SQL# cur = engine.execute(# "INSERT INTO hosts (host, color_id) VALUES ('1.1.1.22', 3)"# ) # 新插入行自增ID# cur.lastrowid # 执行SQL# cur = engine.execute(# "INSERT INTO hosts (host, color_id) VALUES(%s, %s)",[('1.1.1.22', 3),('1.1.1.221', 3),]# ) # 执行SQL# cur = engine.execute(# "INSERT INTO hosts (host, color_id) VALUES (%(host)s, %(color_id)s)",# host='1.1.1.99', color_id=3# ) # 执行SQL# cur = engine.execute('select * from hosts')# 获取第一行数据# cur.fetchone()# 获取第n行数据# cur.fetchmany(3)# 获取所有数据# cur.fetchall() |
二、ORM功能使用
使用 ORM/Schema Type/SQL Expression Language/Engine/ConnectionPooling/Dialect 所有组件对数据进行操作。根据类创建对象,对象转换成SQL,执行SQL。
1、创建表
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
|
#!/usr/bin/env python# -*- coding:utf-8 -*-from sqlalchemy.ext.declarative import declarative_basefrom sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Indexfrom sqlalchemy.orm import sessionmaker, relationshipfrom sqlalchemy import create_engineengine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=5)Base = declarative_base()# 创建单表class Users(Base): __tablename__ = 'users' id = Column(Integer, primary_key=True) name = Column(String(32)) extra = Column(String(16)) __table_args__ = ( UniqueConstraint('id', 'name', name='uix_id_name'), Index('ix_id_name', 'name', 'extra'), )# 一对多class Favor(Base): __tablename__ = 'favor' nid = Column(Integer, primary_key=True) caption = Column(String(50), default='red', unique=True)class Person(Base): __tablename__ = 'person' nid = Column(Integer, primary_key=True) name = Column(String(32), index=True, nullable=True) favor_id = Column(Integer, ForeignKey("favor.nid"))# 多对多class Group(Base): __tablename__ = 'group' id = Column(Integer, primary_key=True) name = Column(String(64), unique=True, nullable=False) port = Column(Integer, default=22)class Server(Base): __tablename__ = 'server' id = Column(Integer, primary_key=True, autoincrement=True) hostname = Column(String(64), unique=True, nullable=False)class ServerToGroup(Base): __tablename__ = 'servertogroup' nid = Column(Integer, primary_key=True, autoincrement=True) server_id = Column(Integer, ForeignKey('server.id')) group_id = Column(Integer, ForeignKey('group.id'))def init_db(): Base.metadata.create_all(engine)def drop_db(): Base.metadata.drop_all(engine) |
注:设置外检的另一种方式 ForeignKeyConstraint(['other_id'], ['othertable.other_id'])
2、操作表
#!/usr/bin/env python
# -*- coding:utf- -*-
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=) Base = declarative_base() # 创建单表
class Users(Base):
__tablename__ = 'users'
id = Column(Integer, primary_key=True)
name = Column(String())
extra = Column(String()) __table_args__ = (
UniqueConstraint('id', 'name', name='uix_id_name'),
Index('ix_id_name', 'name', 'extra'),
) def __repr__(self):
return "%s-%s" %(self.id, self.name) # 一对多
class Favor(Base):
__tablename__ = 'favor'
nid = Column(Integer, primary_key=True)
caption = Column(String(), default='red', unique=True) def __repr__(self):
return "%s-%s" %(self.nid, self.caption) class Person(Base):
__tablename__ = 'person'
nid = Column(Integer, primary_key=True)
name = Column(String(), index=True, nullable=True)
favor_id = Column(Integer, ForeignKey("favor.nid"))
# 与生成表结构无关,仅用于查询方便
favor = relationship("Favor", backref='pers') # 多对多
class ServerToGroup(Base):
__tablename__ = 'servertogroup'
nid = Column(Integer, primary_key=True, autoincrement=True)
server_id = Column(Integer, ForeignKey('server.id'))
group_id = Column(Integer, ForeignKey('group.id'))
group = relationship("Group", backref='s2g')
server = relationship("Server", backref='s2g') class Group(Base):
__tablename__ = 'group'
id = Column(Integer, primary_key=True)
name = Column(String(), unique=True, nullable=False)
port = Column(Integer, default=)
# group = relationship('Group',secondary=ServerToGroup,backref='host_list') class Server(Base):
__tablename__ = 'server' id = Column(Integer, primary_key=True, autoincrement=True)
hostname = Column(String(), unique=True, nullable=False) def init_db():
Base.metadata.create_all(engine) def drop_db():
Base.metadata.drop_all(engine) Session = sessionmaker(bind=engine)
session = Session()
表结构 + 数据库连接
obj = Users(name="alex0", extra='sb')
session.add(obj)
session.add_all([
Users(name="alex1", extra='sb'),
Users(name="alex2", extra='sb'),
])
session.commit()
增
session.query(Users).filter(Users.id > 2).delete()
session.commit()
删
session.query(Users).filter(Users.id > 2).update({"name" : ""})
session.query(Users).filter(Users.id > 2).update({Users.name: Users.name + ""}, synchronize_session=False)
session.query(Users).filter(Users.id > 2).update({"num": Users.num + 1}, synchronize_session="evaluate")
session.commit()
改
ret = session.query(Users).all()
ret = session.query(Users.name, Users.extra).all()
ret = session.query(Users).filter_by(name='alex').all()
ret = session.query(Users).filter_by(name='alex').first() ret = session.query(Users).filter(text("id<:value and name=:name")).params(value=224, name='fred').order_by(User.id).all() ret = session.query(Users).from_statement(text("SELECT * FROM users where name=:name")).params(name='ed').all()
查
# 条件
ret = session.query(Users).filter_by(name='alex').all()
ret = session.query(Users).filter(Users.id > 1, Users.name == 'eric').all()
ret = session.query(Users).filter(Users.id.between(1, 3), Users.name == 'eric').all()
ret = session.query(Users).filter(Users.id.in_([1,3,4])).all()
ret = session.query(Users).filter(~Users.id.in_([1,3,4])).all()
ret = session.query(Users).filter(Users.id.in_(session.query(Users.id).filter_by(name='eric'))).all()
from sqlalchemy import and_, or_
ret = session.query(Users).filter(and_(Users.id > 3, Users.name == 'eric')).all()
ret = session.query(Users).filter(or_(Users.id < 2, Users.name == 'eric')).all()
ret = session.query(Users).filter(
or_(
Users.id < 2,
and_(Users.name == 'eric', Users.id > 3),
Users.extra != ""
)).all() # 通配符
ret = session.query(Users).filter(Users.name.like('e%')).all()
ret = session.query(Users).filter(~Users.name.like('e%')).all() # 限制
ret = session.query(Users)[1:2] # 排序
ret = session.query(Users).order_by(Users.name.desc()).all()
ret = session.query(Users).order_by(Users.name.desc(), Users.id.asc()).all() # 分组
from sqlalchemy.sql import func ret = session.query(Users).group_by(Users.extra).all()
ret = session.query(
func.max(Users.id),
func.sum(Users.id),
func.min(Users.id)).group_by(Users.name).all() ret = session.query(
func.max(Users.id),
func.sum(Users.id),
func.min(Users.id)).group_by(Users.name).having(func.min(Users.id) >2).all() # 连表 ret = session.query(Users, Favor).filter(Users.id == Favor.nid).all() ret = session.query(Person).join(Favor).all() ret = session.query(Person).join(Favor, isouter=True).all() # 组合
q1 = session.query(Users.name).filter(Users.id > 2)
q2 = session.query(Favor.caption).filter(Favor.nid < 2)
ret = q1.union(q2).all() q1 = session.query(Users.name).filter(Users.id > 2)
q2 = session.query(Favor.caption).filter(Favor.nid < 2)
ret = q1.union_all(q2).all()
其他
更多功能参见文档,猛击这里下载PDF
MySQL(Python+ORM)的更多相关文章
- 自己动手实现智能家居之树莓派GPIO简介(Python版)
[前言] 一个热爱技术的人一定向往有一个科技感十足的环境吧,那何不亲自实践一下属于技术人的座右铭:“技术改变世界”. 就让我们一步步动手搭建一个属于自己的“智能家居平台”吧(不要对这个名词抬杠啦,技术 ...
- Mysql(超级详细)
Mysql(超级详细) (黑小子-余) 一.Mysql介绍 MySQL是一个关系型数据库管理系统,由瑞典MySQL AB 公司开发,属于 Oracle 旗下产品.MySQL 是最流行的关系型数据库管理 ...
- 服务器端开发(Python/C++)-今日头条-拉勾网-最专业的互联网招聘平台
服务器端开发(Python/C++)-今日头条-拉勾网-最专业的互联网招聘平台 服务器端开发(Python/C++)
- 编码的秘密(python版)
编码(python版) 最近在学习python的过程中,被不同的编码搞得有点晕,于是看了前人的留下的文档,加上自己的理解,准备写下来,分享给正在为编码苦苦了挣扎的你. 编码的概念 编码就是将信息从一种 ...
- Autoit 实现word拆分页解析 (python同理)
Autoit 实现word拆分页解析 (python同理) 背景 之前一直在做相关工作,由于没有找到解决最佳解决方案,老办法思路是 python先将word 转成pdf,按照页码 提取文字,从而实现w ...
- 华为云的API调用实践(python版本)
一.结论: 1.华为云是符合openstack 社区的API,所以,以社区的API为准.社区API见下面的链接. https://developer.openstack.org/api-ref/net ...
- [指南] 15分钟学会MySQL(Linux版)
原文链接:http://www.mysqlpub.com/thread-348-1-1.html 原创出处:MySQLpub.com , 作者:kider ,转载请注明作者和出处,并不能用于商业用 ...
- DES的加密与解密算法(Python实现)
DES的加密与解密算法(Python实现) 密码学实验:实现了DES的简单的加密和解密算法,DES算法的相关资料网上很多,这里不再赘述,仅仅贴出源代码给大家分享,源码中包含很多汉字注释,相信大家都是可 ...
- H2O中的随机森林算法介绍及其项目实战(python实现)
H2O中的随机森林算法介绍及其项目实战(python实现) 包的引入:from h2o.estimators.random_forest import H2ORandomForestEstimator ...
随机推荐
- zoj 2524 并查集裸
Description There are so many different religions in the world today that it is difficult to keep tr ...
- spring 动态代理
突然想到AOP,就简单回忆一下动态代理.1.什么是动态代理? 假如有个用户有增删该查4个方法,如果要对用户操作后进行日志记录,可能会有人说直接在增删改查后做日志记录就行. 一旦我想在用户操作之前加一个 ...
- SpringCloud基于消息总线的配置中心
@https://www.cnblogs.com/ityouknow/p/6931958.html Spring Cloud Bus Spring cloud bus通过轻量消息代理连接各个分布的节点 ...
- [工作积累] Google Play Services
注意添加APP_ID <meta-data android:name="com.google.android.gms.games.APP_ID" android:value= ...
- Linux----------nfs服务器的搭建及常识
一.nfs简介 nfs(network file system)即网络文件系统,是FreeBSD支持的文件系统中的一种,它允许网络中的计算机之间通过TCP/IP网络共享资源. nfs主要适用用linu ...
- day-13装饰器
函数的嵌套定义 概念:在一个函数的内部定义另一个函数 为什么要有函数的嵌套定义:1)函数fn2想直接使用fn1函数的局部变量,可以将fn2直接定义到fn1的内部,这样fn2就可以直接访问fn1的变量2 ...
- Windows batch file
Echo off @ECHO OFF echo string to generate the output create a blank line echo . create a file echo ...
- 使用excel 数据透视表画图
① 打开Excel,选中需要制表的数据,点击“插入”->“数据透视表” ② 出现下列对话框,点击“确定” ③ 再新的“sheet”表内对“数 ...
- 【C++】const & 指针
https://blog.csdn.net/qq_21808961/article/details/78401950
- CF963D Frequency of String
https://codeforces.com/problemset/problem/123/D 题目大意 给一个字符串 \(s\),每次询问一个字符串 \(m_i\) 和一个正整数 \(k_i\),问 ...