本章内容我们学习一下 MapReduce 中的 Shuffle 过程,Shuffle 发生在 map 输出到 reduce 输入的过程,它的中文解释是 “洗牌”,顾名思义该过程涉及数据的重新分配,主要分为两部分:1. map 任务输出的数据分组、排序,写入本地磁盘 2. reduce 任务拉取排序。由于该过程涉及排序、磁盘IO、以及网络IO 等消耗资源和 CPU 比较大的操作,因此该过程向来是“兵家必争”之地,即大家会重点优化的一个地方,因此也是大数据面试中经常会被重点考察的地方。本文力求通俗、简单地将 Shuffle 过程描述清楚。

包含 Shuffle 过程的 MapReduce 任务处理流程如下图,图片来自《Hadoop权威指南(第四版)》

接下来,分别介绍 Shuffle 所涉及的主要操作。

map 端

map 端输出时,先将数据写入内存中的环形缓冲区,默认大小为 100M,可以通过 mapreduce.task.io.sort.mb 来设置。map 端输出过程如下:

  • 当缓冲区的内容大小达到阈值(默认 0.8,即缓冲区大小的 80%,可通过 mapreduce.map.sort.spill.percent 设置),便有一个后台线程会将写入缓冲区的内容溢写到磁盘。溢写的过程中 map 任务仍然可以写缓冲区,一旦缓冲区写满,map 任务阻塞,直到后台线程写磁盘结束
  • 后台线程写磁盘之前会计算输出的 key 的分区(一个分区对应一个 reduce 任务),同一个分区的 key 分在一组并按照 key 排序。最后写到本地磁盘。如果设置 combiner 函数,会在写磁盘之前调用 combaner 函数。我们之前没有介绍 combiner,不理解的同学可以先忽略,只需知道它是先将数据聚合为了减少网络IO,且不会影响 reduce 计算结果的一个操作即可
  • 每一次溢写都会产生一个溢出文件,map 输出结束后会产生多个溢出文件。最终会被合并成一个分区的且有序的文件。这里为什么要合并成 1 个,因为如果 map 输出的数据比较多,产生本地的小文件会太多,影响系统性能。因此需要进行合并,通过 mapreduce.task.io.sort.factor 设置一次可以合并的文件个数,默认为 10
  • 输出到磁盘的过程中可以设置压缩, 默认不压缩。通过设置 mapreduce.map.output.compress 为 true 开启压缩

以上便是 map 任务输出过程的主要操作,输出到磁盘后,reducer 会通过 http 服务拉取输出文件中属于自己分区的数据。

reduce 端

reduce 端在 Shuffle 阶段主要涉及复制排序两个过程。 reduce 端拉取 map 输出数据的过程是复制阶段,对应上图中的 fetch。一个 reduce 任务需要从多个 map 输出复制。因此只要有 map 任务完成,reduce 任务就可以进行复制。复制的过程可以是多线程并发进行,并发的线程个数由 mapreduce.reduce.shuffle.parallelcopies 设置,默认是 5 。

  • map 任务完成后通过心跳通知 application master,reduce 端会有一个线程定期查询 application master,以获取完成的 map 任务的位置,从而去对应的机器复制数据
  • reduce 复制的数据先写到 reduce 任务的 JVM 内存,通过 mapreduce.reduce.shuffle.input.buffer.percent 控制可以用的内存比例
  • 如果复制的数据大小达到内存阈值(通过 mapreduce.reduce.shuffle.merge.percent 控制)或者复制的文件数达到阈值(通过 mapreduce.reduce.merge.inmem.threshold 控制,默认 1000)则将内存的数据合并溢写到磁盘,如果设置了 combine 函数,写磁盘前会调用 combine 函数以减少写入磁盘的数据量
  • 复制阶段结束后,reduce 将进入排序阶段。如果发生了上面第三步,即产生溢写,那么磁盘可能会有多个溢写文件,此时需要将磁盘文件合并并排序。如果溢写的文件较多,需要多次合并,每次合并的文件数由 mapreduce.task.io.sort.factor 控制。最后一次合并排序的时候不会将数据写到磁盘而直接作为 reduce 任务的输入

以上便是 reduce 任务前的复制、排序阶段。至此,整个 Shuffle 过程就介绍完毕。

参数调优

我们在上面介绍 Shuffle 过程时已经提到了一些参数,这里统一整理并说明一下

map 端调优参数

参数名 默认值 说明
mapreduce.task.io.sort.mb 100 map 输出是所使用的内存缓冲区大小,单位:MB
mapreduce.map.sort.spill.percent 0.80 map 输出溢写到磁盘的内存阈值
mapreduce.task.io.sort.factor 10 排序文件是一次可以合并的流数
mapreduce.map.output.compress false  map 输出是否压缩
mapreduce.map.output.compress.codec org.apache.hadoop.io.compress.DefaultCodec map 输出压缩的编解码器

我们希望在 map 输出阶段能够提供更多的内存空间,以提升性能。因此 map 函数应该尽量少占用内存,以便留出内存用于输出。我们也可以评估 map 输出,通过增大 mapreduce.task.io.sort.mb 值来减少溢写的文件数。

reduce 端调优参数

参数名

默认值

说明
mapreduce.reduce.shuffle.parallelcopies 5 并发复制的线程数
mapreduce.task.io.sort.factor 10 同 map 端
mapreduce.reduce.shuffle.input.buffer.percent 0.70 Shuffle 的复制阶段,用来存放 map 输出缓冲区占reduce 堆内存的百分比
mapreduce.reduce.shuffle.merge.percent 0.66 map 输出缓冲区的阈值,超过该比例将进行合并和溢写磁盘
mapreduce.reduce.merge.inmem.threshold 1000 阈值,当累积的 map 输出文件数超过该值,进行合并和溢写磁盘,0或者负值意味着改参数无效,合并和溢写只由 mapreduce.reduce.shuffle.merge.percent 控制
mapreduce.reduce.input.buffer.percent 0.0

在 reduce 过程(开始运行 reduce 函数时),内存中保存 map 输出的空间站整个堆空间的比例。

默认情况下,reduce 任务开始前所有的 map 输出合并到磁盘,以便为 reducer 提供尽可能多的内存。

如果 reducer 需要的内存较少,可以增加此值以最小化磁盘访问次数

在 reduce 端,进行 reduce 函数前,如果中间数据全部驻留内存可以获得最佳性能,默认情况是不能实现的。如果 reduce 函数内存需求不大,把 mapreduce.reduce.input.buffer.percent 参数设置大一些可以提升性能。

总结

今天这章,我们详细介绍了 Shuffle 过程,关注 Shuffle 过程的性能对整个 MR 作业的性能调优至关重要。经过这章的介绍,我们能够掌握 Shuffle 过程的关键技术点,虽然还不算深入。同时,我们介绍了常见的参数以及调优方法,希望能够在实际应用中不断的尝试、总结,写出性能最佳的任务。

大数据技术 - MapReduce的Shuffle及调优的更多相关文章

  1. 大数据技术 - MapReduce的Combiner介绍

    本章来简单介绍下 Hadoop MapReduce 中的 Combiner.Combiner 是为了聚合数据而出现的,那为什么要聚合数据呢?因为我们知道 Shuffle 过程是消耗网络IO 和 磁盘I ...

  2. 大数据技术 —— MapReduce 简介

    本文为senlie原创,转载请保留此地址:http://www.cnblogs.com/senlie/ 1.概要很多计算在概念上很直观,但由于输入数据很大,为了能在合理的时间内完成,这些计算必须分布在 ...

  3. 大数据技术 - MapReduce 作业的运行机制

    前几章我们介绍了 Hadoop 的 MapReduce 和 HDFS 两大组件,内容比较基础,看完后可以写简单的 MR 应用程序,也能够用命令行或 Java API 操作 HDFS.但要对 Hadoo ...

  4. 大数据技术 - MapReduce 应用的配置和单元测试

    上一章的 MapReduce 应用中,我们使用了自定义配置,并用 GenericOptionsParser 处理命令行输入的配置,这种方式简单粗暴.但不是 MapReduce 应用常见的写法,本章第一 ...

  5. Google大数据技术架构探秘

    原文地址:https://blog.csdn.net/bingdata123/article/details/79927507 Google是大数据时代的奠基者,其大数据技术架构一直是互联网公司争相学 ...

  6. 大数据技术之Hadoop(MapReduce)

    第1章 MapReduce概述 1.1 MapReduce定义 1.2 MapReduce优缺点 1.2.1 优点 1.2.2 缺点 1.3 MapReduce核心思想 MapReduce核心编程思想 ...

  7. 大数据技术 vs 数据库一体机[转]

    http://blog.sina.com.cn/s/blog_7ca5799101013dtb.html 目前,虽然大数据与数据库一体机都很火热,但相当一部分人却无法对深入了解这两者的本质区别.这里便 ...

  8. 大数据技术生态圈形象比喻(Hadoop、Hive、Spark 关系)

    [摘要] 知乎上一篇很不错的科普文章,介绍大数据技术生态圈(Hadoop.Hive.Spark )的关系. 链接地址:https://www.zhihu.com/question/27974418 [ ...

  9. 【学习笔记】大数据技术原理与应用(MOOC视频、厦门大学林子雨)

    1 大数据概述 大数据特性:4v volume velocity variety value 即大量化.快速化.多样化.价值密度低 数据量大:大数据摩尔定律 快速化:从数据的生成到消耗,时间窗口小,可 ...

随机推荐

  1. Confluence 6 降级你的许可证

    如果你决定降级你 Confluence 的许可证而削减你的许可证开支,你需要确定当前已经直排的用户许可证数量(在用户许可证页面中)要少于你希望应用的新的许可证的允许用户数量,在你应用新许可证的时候. ...

  2. AFN 请求报 415错误解决方案

    使用 AFHTTPSessionManager  发起请求时 设置下面两句代码 manager.requestSerializer = [AFJSONRequestSerializer seriali ...

  3. mysql视图的作用

    测试表:user有id,name,age,sex字段 测试表:goods有id,name,price字段 测试表:ug有id,userid,goodsid字段 视图的作用实在是太强大了,以下是我体验过 ...

  4. poj2817状态压缩 升维

    /* 两两求出字符串之间最大可以匹配的值 由已知状态推导出位置状态 状态s表示已经加入到集合中的字符串,0表示串i不存在,1存在 由于字符串的加入顺序会影响结果,所以增加一维来表示 dp[S][i]表 ...

  5. 简单(基本)的风光摄影照片后期处理-新手教程-ps照片后期基本处理

    前言 Photoshop虽然不是万能的,但缺少Photoshop却是万万不能的!风光摄影不是一个记录过程,做到的不能仅仅是“拍到了”,我觉得应该是一个创作的过程,特别是在后期处理的过程中,创作意味更浓 ...

  6. 步步为营-93-MVC+EF简单实例

    1:创建MVC项目 2:添加EF数据(这里选择DataBaseFirst模式) 3:添加控制器 3.1.1 创建列表页面 3.1.2 html页面 @using MvcApplication1 @{ ...

  7. IEDA序列化设置

  8. HDU 1247 Hat’s Words(字典树活用)

    Hat's Words Time Limit : 2000 / 1000 MS(Java / Others)    Memory Limit : 65536 / 32768 K(Java / Othe ...

  9. 史上最简单的SpringCloud教程 | 第七篇: 高可用的分布式配置中心(Spring Cloud Config)

    上一篇文章讲述了一个服务如何从配置中心读取文件,配置中心如何从远程git读取配置文件,当服务实例很多时,都从配置中心读取文件,这时可以考虑将配置中心做成一个微服务,将其集群化,从而达到高可用,架构图如 ...

  10. Django实现注册页面_头像上传

    Django实现注册页面_头像上传 Django实现注册页面_头像上传 1.urls.py 配置路由 from django.conf.urls import url from django.cont ...