[WC2011]最大XOR和路径(贪心+线性基)
题目大意:给一张无向图,求一条1-n的路径,是路径边权的异或和最小。
题解
这道题的思路很妙,首先我们可以随便找出一条从1到n的路径来,然后我们可以选一些环。
其实不管这个环和这条路径有怎样的关系,我们都是可以直接选的。
比如说选了一个和这个路径没有交的环,等价于从1走到了这个环然后走了一圈又走回到了1,一条边被异或两次相当于吗,没走。
对于和路径有交的环,异或上它相当于把有交的部分异或两次,相当于走了这个环,也是合法的。
然后我们把所有环插入线性基中,预处理可以用dfs实现。
代码
#include<iostream>
#include<cstdio>
#define N 100002
using namespace std;
typedef long long ll;
ll dis[N],tot,head[N],b[],n,m;
bool vis[N];
inline ll rd(){
ll x=;char c=getchar();bool f=;
while(!isdigit(c)){if(c=='-')f=;c=getchar();}
while(isdigit(c)){x=(x<<)+(x<<)+(c^);c=getchar();}
return f?-x:x;
}
struct edge{int n,to;ll l;}e[N<<];
inline void add(int u,int v,ll l){e[++tot].n=head[u];e[tot].to=v;e[tot].l=l;head[u]=tot;}
inline void ins(ll x){
for(int i=;i>=;--i)if((1ll<<i)&x){
if(b[i])x^=b[i];
else{b[i]=x;return;}
}
}
inline ll query(ll x){
for(int i=;i>=;--i)if((b[i]^x)>x)x^=b[i];
return x;
}
void dfs(int u){
vis[u]=;
for(int i=head[u];i;i=e[i].n){
int v=e[i].to;
if(vis[v])ins(dis[u]^dis[v]^e[i].l);
else dis[v]=dis[u]^e[i].l,dfs(v);
}
}
int main(){
n=rd();m=rd();ll u,v,w;
for(int i=;i<=m;++i){
u=rd();v=rd();w=rd();
add(u,v,w);add(v,u,w);
}
dfs();
printf("%lld\n",query(dis[n]));
return ;
}
[WC2011]最大XOR和路径(贪心+线性基)的更多相关文章
- [WC2011]最大XOR和路径(线性基)
P4151 [WC2011]最大XOR和路径 题目描述 XOR(异或)是一种二元逻辑运算,其运算结果当且仅当两个输入的布尔值不相等时才为真,否则为假. XOR 运算的真值表如下( 1 表示真, 0 表 ...
- 洛谷P4151 [WC2011]最大XOR和路径(线性基)
传送门 不知道线性基是什么东西的可以看看蒟蒻的总结 首先看到异或就想到线性基 我们考虑有一条路径,那么从这条路径走到图中的任意一个环再走回这条路径上,对答案的贡献是这个环的异或和,走到这个环上的路径对 ...
- [WC2011]最大XOR和路径 线性基
[WC2011]最大XOR和路径 LG传送门 需要充分发掘经过路径的性质:首先注意不一定是简单路径,但由于统计的是异或值,重复走是不会被统计到的,考虑对于任意一条从\(1\)到\(n\)的路径的有效部 ...
- 洛谷 P4151 [WC2011]最大XOR和路径 解题报告
P4151 [WC2011]最大XOR和路径 题意 求无向带权图的最大异或路径 范围 思路还是很厉害的,上午想了好一会儿都不知道怎么做 先随便求出一颗生成树,然后每条返祖边都可以出现一个环,从的路径上 ...
- 题解-[WC2011]最大XOR和路径
[WC2011]最大XOR和路径 给一个 \(n\) 个点 \(m\) 条边(权值为 \(d_i\))的无向有权图,可能有重边和子环.可以多次经过一条边,求 \(1\to n\) 的路径的最大边权异或 ...
- P4151 [WC2011]最大XOR和路径
P4151 [WC2011]最大XOR和路径 一道妙极了的题. 首先直接从1走到n 然后现在图上有很多环 所以可以在走到n之后走到环上一个点,再走一遍环,再原路返回.这样就会xor上环的权值. 然后只 ...
- 洛谷P4151 [WC2011] 最大XOR和路径 [线性基,DFS]
题目传送门 最大XOR和路径 格式难调,题面就不放了. 分析: 一道需要深刻理解线性基的题目. 好久没打过线性基的题了,一开始看到这题还是有点蒙逼的,想了几种方法全被否定了.还是看了大佬的题解才会做的 ...
- 【线性基/神仙题】P4151 [WC2011]最大XOR和路径
Description 给定一个无向连通图,边有边权,求一个 \(1~\sim n\) 的路径,最大化边权的异或和.如果一条边经过多次则计算多次. Input 第一行是两个整数 \(n,m\) 代表点 ...
- [luogu4151 WC2011] 最大XOR和路径 (线性基)
传送门 输入输出样例 输入样例#1: 5 7 1 2 2 1 3 2 2 4 1 2 5 1 4 5 3 5 3 4 4 3 2 输出样例#1: 6 说明 [样例说明] 根据异或的性质,将一个数异或两 ...
随机推荐
- Linux watchdog
使用 watchdog 构建高可用性的 Linux 系统及应用https://www.ibm.com/developerworks/cn/linux/l-cn-watchdog/index.html ...
- Laravel 获取 Route Parameters (路由参数) 的 5 种方法
Laravel 获取路由参数的方式有很多,并且有个小坑,汇总如下. 假设我们设置了一个路由参数: 现在我们访问 http://test.dev/1/2 在 TestController ...
- [转帖]一键获取 所有连接过的wifi 密码
cmd 一键获取 所有连接过的wifi 密码 转帖来源: http://www.cnblogs.com/hookjoy/p/5537623.html for /f "skip=9 token ...
- python数据结构与算法第八天【冒泡排序】
1.排序算法的稳定性 稳定排序算法会让原本有相同键值的记录维持相对次序 例如:对以下元组按照元组的第一个元素升序排列,元组如下: (4,1) (3,1) (3,7) (5,6) 若要满足条件,则可能的 ...
- linux的使用
第一 安装ubuntu操作系统 1. ubuntu下解决中英文输入法问题 问题: ubuntu在安装了搜狗输入法后无法切换英文,即使在搜狗输入法中设置了切换按键依然无反应, 原因在于当前系统中只有一个 ...
- adoquery.refresh和adoquery.query的区别
大的区别没有 1: requery是通过重新发出原始命令并再次检索数据,可使用 Requery 方法刷新来自数据源的 Recordset 对象的全部内容.调用该方法等于相继调用 Close 和 Ope ...
- css的特性
一.继承性: 继承是一种规则,它允许样式不仅应用于某个特定html标签元素,而且应用于其后代. /* 不具有继承性的css样式: */p{border:1px solid red;} 二.特殊性(优先 ...
- JavaScript简单简介
JavaScript,男,web页面的一种脚本编程语言,1955年诞生,妻子为HTML,魔法能力是将静态页面(经过与用户交互与相应)转变为动态页面. 刚进入浏览器市场(魔界)的时候,也就是js1.0岁 ...
- Spring boot多线程
1.配置线程配置类 package test; import java.util.concurrent.Executor; import org.springframework.aop.interce ...
- oracle的用户账号密码设置
1. 可以用sqlplus system/你输入的密码 可以用sqlplus /nolog 可以用sqlplus /as sysdba2. @你scott.sql的路径3. 修改你的账号 alter ...